

UNITED STATES ENVIRONMENTAL PROTECTION AGENCY REGION 5 CHICAGO REGIONAL LABORATORY 536 SOUTH CLARK STREET CHICAGO, ILLINOIS 60605

Date:

5/2/2019

Subject:

Review of Region 5 Data for R06 Deer Park PFAS

To:

Region 6, US EPA 10625 Fallstone Road Houston, TX 77099

From:

Danielle Kleinmaier, Chemist

US EPA Region 5 Chicago Regional Laboratory

The data transmitted under this cover memo successfully passed CRL's data review procedures as documented in the current Quality Management Plan and applicable Standard Operating Procedures. In accordance with the EPA QA/G-8 *Guidance on Environmental Data Verification and Data Validation* and the U.S. EPA Region 5 RMD QMP, CRL performs data verification on all the data generated internally. CRL does not perform data validation or quality assessment procedures.

This report was reviewed and the information provided herein accurately represents the analysis performed.

Please contact the analyst with any technical report issues, Amanda Wroble at (312)-353-0375 for sample project concerns, and Sylvia Griffin at (312)-353-9073 with data transmittal questions. Thank you.

Attached are Results for: R06 Deer Park PFAS

Analyses included in this report:

OSRTI PFC

Region 6, US EPA

Environmental Protection Agency Region 5

Chicago Regional Laboratory

536 South Clark Street, Chicago, IL 60605 Phone:(312)353-8370 Fax:(312)886-2591

Project: R06 Deer Park PFAS

10625 Fallstone RoadProject Number: [none]Reported:Houston TX, 77099Project Manager: Matthew LoeselMay-02-19 16:52

Accredited Analyses included in this Report

Method: *** DEFAULT SPECIFIC METHOD *** in Water

Analysis: OSRTI PFC

Analyte	Certifications
perfluorobutanoate	ISO/IEC 17025:2005
perfluoropentanoate	ISO/IEC 17025:2005
perfluorohexanoate	ISO/IEC 17025:2005
perfluoroheptanoate	ISO/IEC 17025:2005
perfluorooctanoate	ISO/IEC 17025:2005
perfluorononanoate	ISO/IEC 17025:2005
perfluorodecanoate	ISO/IEC 17025:2005
perfluoroundecanoate	ISO/IEC 17025:2005
perfluorododecanoate	ISO/IEC 17025:2005
perfluorotridecanoate	ISO/IEC 17025:2005
perfluorotetradecanoate	ISO/IEC 17025:2005
perfluorobutyl sulfonate	ISO/IEC 17025:2005
perfluorohexyl sulfonate	ISO/IEC 17025:2005
perfluorooctyl sulfonate	ISO/IEC 17025:2005
1H,1H,2H,2H-perfluorohexane sulfonate (4:2 FTS)	ISO/IEC 17025:2005
perfluoro-1-pentanesulfonate (PFPeS)	ISO/IEC 17025:2005
1H,1H,2H,2H-perfluorooctane sulfonate (6:2 FTS)	ISO/IEC 17025:2005
perfluoro-1-heptanesulfonate (PFHpS)	ISO/IEC 17025:2005
perfluoro-1-octanesulfonamide (FOSA)	ISO/IEC 17025:2005
1H,1H,2H,2H-perfluorodecane sulfonate (8:2 FTS)	ISO/IEC 17025:2005
perfluoro-1-nonanesulfonate (PFNS)	ISO/IEC 17025:2005
N-MeFOSAA	ISO/IEC 17025:2005
N-EtFOSAA	ISO/IEC 17025:2005
perfluoro-1-decanesulfonate (PFDS)	ISO/IEC 17025:2005

Environmental Protection Agency Region 5 Chicago Regional Laboratory

536 South Clark Street, Chicago, IL 60605 Phone:(312)353-8370 Fax:(312)886-2591

Region 6, US EPA Project: R06 Deer Park PFAS

10625 Fallstone RoadProject Number: [none]Reported:Houston TX, 77099Project Manager: Matthew LoeselMay-02-19 16:52

Analytes not listed above are not accredited by ANAB.

Chicago Regional Laboratory

536 South Clark Street, Chicago, IL 60605 Phone:(312)353-8370 Fax:(312)886-2591

WORK ORDER

1905002

US EPA Region 5 Chicago Regional Laboratory

Client: Region 6, US EPA Project Manager: Angela Ockrassa Davis

Project: R06 Deer Park PFAS Project Number: [none]

Report To:

 Matthew Loesel
 10625 Fallstone Road
 Phone: (214) 665-9544

 Region 6, US EPA
 Houston, TX 77099
 Fax: (281) 983-2248

Date Due: May-30-19 15:00 (30 day TAT)

Yes

Received By: Robert Snyder Date Received: Apr-30-19 09:00
Logged In By: Robert Snyder Date Logged In: May-01-19 12:42

Samples Received at: 1.7 °C Work Order Comments:

Sample tags/labels Yes Copy/Relog from 1904037.

Seals Intact Yes

Received on ice Yes

Sample ID: 1905002-01 Sampled: Apr-26-19 08:45 Matrix: Water

Sample Name: <u>ITC-BB-01-20190426-11</u> Sample Location/Comments: <u>BB-01</u>

Sample Comments:

Paperwork Included

Analysis Hold time (days) Expires Comments
OSRTI PFC 28 May-24-19 08:45

Sample ID: <u>1905002-02</u> Sampled: <u>Apr-26-19 11:15</u> Matrix: <u>Water</u>

Sample Name: <u>ITC-BB-01-20190426-15</u> Sample Location/Comments: <u>Field QC</u>

Sample Comments:

AnalysisHold time (days)ExpiresCommentsOSRTI PFC28May-24-19 11:15

Sample ID: <u>1905002-03</u> Sampled: <u>Apr-27-19 09:15</u> Matrix: <u>Water</u>

Sample Name: ITC-BB-01-20190427-11 Sample Location/Comments: BB-01

Sample Comments:

AnalysisHold time (days)ExpiresCommentsOSRTI PFC28May-25-19 09:15

1905002

US EPA Region 5 Chicago Regional Laboratory

Client: Region 6, US EPA Project Manager: Angela Ockrassa Davis

Project: R06 Deer Park PFAS Project Number: [none]

Sample ID: <u>1905002-04</u> Sampled: <u>Apr-28-19 08:40</u> Matrix: <u>Water</u>

Sample Name: <u>ITC-BB-01-20190428-11</u> Sample Location/Comments: <u>BB-01</u>

Sample Comments:

Analysis	Hold time (days)	Expires	Comments
OSRTI PFC	28	May-26-19 08:40	

Sample ID: <u>1905002-05</u> Sampled: <u>Apr-29-19 08:30</u> Matrix: <u>Water</u>

Sample Name: <u>ITC-BB-01-20190429-11</u> Sample Location/Comments: <u>BB-01</u>

Sample Comments:

Analysis	Hold time (days)	Expires	Comments	
OSRTI PFC	28	May-27-19 08:30		

Sample ID: <u>1905002-06</u> Sampled: <u>Apr-26-19 08:55</u> Matrix: <u>Water</u>

Sample Name: <u>ITC-BB-02-20190426-11</u> Sample Location/Comments: <u>BB-02</u>

Sample Comments:

Analysis	Hold time (days)	Expires	Comments	
OSRTI PFC	28	May-24-19 08:55		

Sample ID: <u>1905002-07</u> Sampled: <u>Apr-26-19 08:55</u> Matrix: <u>Water</u>

Sample Name: <u>ITC-BB-02-20190426-12</u> Sample Location/Comments: <u>BB-02</u>

Sample Comments:

~	r				
	Analysis	Hold time (days)	Expires	Comments	
	OSRTI PFC	28	May-24-19 08:55		

Sample ID: <u>1905002-08</u> Sampled: <u>Apr-27-19 09:30</u> Matrix: <u>Water</u>

Sample Name: ITC-BB-02-20190427-11 Sample Location/Comments: BB-02

Sample Comments:

Analysis	Hold time (days)	Expires	Comments	
OSRTI PFC	28	May-25-19 09:30		

1905002

US EPA Region 5 Chicago Regional Laboratory

Client: Region 6, US EPA Project Manager: Angela Ockrassa Davis

Project: R06 Deer Park PFAS Project Number: [none]

Sample ID: <u>1905002-09</u> Sampled: <u>Apr-28-19 08:55</u> Matrix: <u>Water</u>

Sample Name: <u>ITC-BB-02-20190428-11</u> Sample Location/Comments: <u>BB-02</u>

Sample Comments:

Analysis	Hold time (days)	Expires	Comments	
OSRTI PFC	28	May-26-19 08:55		

Sample ID: <u>1905002-10</u> Sampled: <u>Apr-29-19 08:40</u> Matrix: <u>Water</u>

Sample Name: <u>ITC-BB-02-20190429-11</u> Sample Location/Comments: <u>BB-02</u>

Sample Comments:

Analysis	Hold time (days)	Expires	Comments	
OSRTI PFC	28	May-27-19 08:40		

Sample ID: <u>1905002-11</u> Sampled: <u>Apr-29-19 11:15</u> Matrix: <u>Water</u>

Sample Name: ITC-BB-02-20190429-15 Sample Location/Comments: FieldQC

Sample Comments:

Analysis	Hold time (days)	Expires	Comments	
OSRTI PFC	28	May-27-19 11:15		

Sample ID: <u>1905002-12</u> Sampled: <u>Apr-26-19 09:10</u> Matrix: <u>Water</u>

Sample Name: <u>ITC-BB-03-20190426-11</u> Sample Location/Comments: <u>BB-03</u>

Sample Comments:

Analysis	Hold time (days)	Expires	Comments
OSRTI PFC	28	May-24-19 09:10	

Sample ID: <u>1905002-13</u> Sampled: <u>Apr-27-19 09:40</u> Matrix: <u>Water</u>

Sample Name: <u>ITC-BB-03-20190427-11</u> Sample Location/Comments: <u>BB-03</u>

Sample Comments:

Analysis	Hold time (days)	Expires	Comments	
OSRTI PFC	28	May-25-19 09:40		

1905002

US EPA Region 5 Chicago Regional Laboratory

Client: Region 6, US EPA Project Manager: Angela Ockrassa Davis

Project: R06 Deer Park PFAS Project Number: [none]

Sample ID: <u>1905002-14</u> Sampled: <u>Apr-27-19 09:40</u> Matrix: <u>Water</u>

Sample Name: <u>ITC-BB-03-20190427-12</u> Sample Location/Comments: <u>BB-03</u>

Sample Comments:

Analysis	Hold time (days)	Expires	Comments
OSRTI PFC	28	May-25-19 09:40	

Sample ID: <u>1905002-15</u> Sampled: <u>Apr-28-19 09:05</u> Matrix: <u>Water</u>

Sample Name: <u>ITC-BB-03-20190428-11</u> Sample Location/Comments: <u>BB-03</u>

Sample Comments:

Analysis	Hold time (days)	Expires	Comments	
OSRTI PFC	28	May-26-19 09:05		

Sample ID: <u>1905002-16</u> Sampled: <u>Apr-28-19 11:00</u> Matrix: <u>Water</u>

Sample Name: ITC-BB-03-20190428-15 Sample Location/Comments: FieldQC

Sample Comments:

Analysis	Hold time (days)	Expires	Comments	
OSRTI PFC	28	May-26-19 11:00		

Sample ID: <u>1905002-17</u> Sampled: <u>Apr-29-19 08:50</u> Matrix: <u>Water</u>

Sample Name: <u>ITC-BB-03-20190429-11</u> Sample Location/Comments: <u>BB-03</u>

Sample Comments:

- W				
Analysis	Hold time (days)	Expires	Comments	
OSRTI PFC	28	May-27-19 08:50		

Sample ID: 1905002-18 Sampled: Apr-26-19 09:25 Matrix: Water OC Source Sample

Sample Name: <u>ITC-BB-05-20190426-11</u> Sample Location/Comments: <u>BB-05</u>

Sample Comments:

Analysis	Hold time (days)	Expires	Comments
OSRTI PFC	28	May-24-19 09:25	

1905002

US EPA Region 5 Chicago Regional Laboratory

Client: Region 6, US EPA Project Manager: Angela Ockrassa Davis

Project: R06 Deer Park PFAS Project Number: [none]

Sample ID: <u>1905002-19</u> Sampled: <u>Apr-27-19 09:55</u> Matrix: <u>Water</u>

Sample Name: ITC-BB-05-20190427-11 Sample Location/Comments: BB-05

Sample Comments:

Analysis	Hold time (days)	Expires	Comments
OSRTI PFC	28	May-25-19 09:55	

Sample ID: <u>1905002-20</u> Sampled: <u>Apr-28-19 09:20</u> Matrix: <u>Water</u>

Sample Name: <u>ITC-BB-05-20190428-11</u> Sample Location/Comments: <u>BB-05</u>

Sample Comments:

Analysis	Hold time (days)	Expires	Comments	
OSRTI PFC	28	May-26-19 09:20		

Sample ID: <u>1905002-21</u> Sampled: <u>Apr-28-19 09:20</u> Matrix: <u>Water</u>

Sample Name: <u>ITC-BB-05-20190428-12</u> Sample Location/Comments: <u>BB-05</u>

Sample Comments:

Analysis	Hold time (days)	Expires	Comments	
OSRTI PFC	28	May-26-19 09:20		

Sample ID: <u>1905002-22</u> Sampled: <u>Apr-29-19 09:05</u> Matrix: <u>Water</u>

Sample Name: <u>ITC-BB-05-20190429-11</u> Sample Location/Comments: <u>BB-05</u>

Sample Comments:

Analysis	Hold time (days)	Expires	Comments
OSRTI PFC	28	May-27-19 09:05	

Sample ID: <u>1905002-23</u> Sampled: <u>Apr-26-19 10:30</u> Matrix: <u>Water</u>

Sample Name: <u>ITC-BB-07-20190426-11</u> Sample Location/Comments: <u>BB-07</u>

Sample Comments:

Analysis	Hold time (days)	Expires	Comments	
OSRTI PFC	28	May-24-19 10:30		

1905002

US EPA Region 5 Chicago Regional Laboratory

Client: Region 6, US EPA Project Manager: Angela Ockrassa Davis

Project: R06 Deer Park PFAS Project Number: [none]

Sample ID: 1905002-24 Sampled: Apr-27-19 10:30 Matrix: Water QC Source Sample

Sample Name: ITC-BB-07-20190427-11 Sample Location/Comments: BB-07

Sample Comments:

Analysis	Hold time (days)	Expires	Comments	
OSRTI PFC	28	May-25-19 10:30		

Sample ID: <u>1905002-25</u> Sampled: <u>Apr-28-19 10:25</u> Matrix: <u>Water</u>

Sample Name: <u>ITC-BB-07-20190428-11</u> Sample Location/Comments: <u>BB-07</u>

Sample Comments:

Analysis	Hold time (days)	Expires	Comments	
OSRTI PFC	28	May-26-19 10:25		

Sample ID: <u>1905002-26</u> Sampled: <u>Apr-29-19 09:50</u> Matrix: <u>Water</u>

Sample Name: ITC-BB-07-20190429-11 Sample Location/Comments: BB-07

Sample Comments:

Analysis	Hold time (days)	Expires	Comments	
OSRTI PFC	28	May-27-19 09:50		

Sample ID: <u>1905002-27</u> Sampled: <u>Apr-29-19 09:50</u> Matrix: <u>Water</u>

Sample Name: <u>ITC-BB-07-20190429-12</u> Sample Location/Comments: <u>BB-07</u>

Sample Comments:

Analysis	Hold time (days)	Expires	Comments	
OSRTI PFC	28	May-27-19 09:50		

Sample ID: <u>1905002-28</u> Sampled: <u>Apr-26-19 10:05</u> Matrix: <u>Water</u>

Sample Name: <u>ITC-BB-09-20190426-11</u> Sample Location/Comments: <u>BB-09</u>

Sample Comments:

Analysis	Hold time (days)	Expires	Comments	
OSRTI PFC	28	May-24-19 10:05		

1905002

US EPA Region 5 Chicago Regional Laboratory

Client: Region 6, US EPA Project Manager: Angela Ockrassa Davis

Project: R06 Deer Park PFAS Project Number: [none]

Sample ID: <u>1905002-29</u> Sampled: <u>Apr-27-19 10:15</u> Matrix: <u>Water</u>

Sample Name: ITC-BB-09-20190427-11 Sample Location/Comments: BB-09

Sample Comments:

Analysis	Hold time (days)	Expires	Comments
OSRTI PFC	28	May-25-19 10:15	

Sample ID: 1905002-30 Sampled: Apr-28-19 09:50 Matrix: Water QC Source Sample

Sample Name: <u>ITC-BB-09-20190428-11</u> Sample Location/Comments: <u>BB-09</u>

Sample Comments:

Analysis	Hold time (days)	Expires	Comments	
OSRTI PFC	28	May-26-19 09:50		

Sample ID: <u>1905002-31</u> Sampled: <u>Apr-29-19 09:35</u> Matrix: <u>Water</u>

Sample Name: <u>ITC-BB-09-20190429-11</u> Sample Location/Comments: <u>BB-09</u>

Sample Comments:

Analysis	Hold time (days)	Expires	Comments	
OSRTI PFC	28	May-27-19 09:35		

Sample ID: <u>1905002-32</u> Sampled: <u>Apr-26-19 09:55</u> Matrix: <u>Water</u>

Sample Name: <u>ITC-BB-11-20190426-11</u> Sample Location/Comments: <u>BB-11</u>

Sample Comments:

- W				
Analysis	Hold time (days)	Expires	Comments	
OSRTI PFC	28	May-24-19 09:55		

Sample ID: <u>1905002-33</u> Sampled: <u>Apr-27-19 10:05</u> Matrix: <u>Water</u>

Sample Name: <u>ITC-BB-11-20190427-11</u> Sample Location/Comments: <u>BB-11</u>

Sample Comments:

Analysis	Hold time (days)	Expires	Comments	
OSRTI PFC	28	May-25-19 10:05		

1905002

US EPA Region 5 Chicago Regional Laboratory

Client: Region 6, US EPA Project Manager: Angela Ockrassa Davis

Project: R06 Deer Park PFAS Project Number: [none]

Sample ID: <u>1905002-34</u> Sampled: <u>Apr-28-19 09:40</u> Matrix: <u>Water</u>

Sample Name: <u>ITC-BB-11-20190428-11</u> Sample Location/Comments: <u>BB-11</u>

Sample Comments:

Analysis	Hold time (days)	Expires	Comments	
OSRTI PFC	28	May-26-19 09:40		

Sample ID: 1905002-35 Sampled: Apr-29-19 09:15 Matrix: Water QC Source Sample

Sample Name: <u>ITC-BB-11-20190429-11</u> Sample Location/Comments: <u>BB-11</u>

Sample Comments:

Analysis	Hold time (days)	Expires	Comments
OSRTI PFC	28	May-27-19 09:15	

Sample ID: <u>1905002-36</u> Sampled: <u>Apr-26-19 08:25</u> Matrix: <u>Water</u>

Sample Name: <u>ITC-BB-12-20190426-11</u> Sample Location/Comments: <u>BB-12</u>

Sample Comments:

	Analysis	Hold time (days)	Expires	Comments
,	OSRTI PFC	28	May-24-19 08:25	

Sample ID: <u>1905002-37</u> Sampled: <u>Apr-27-19 08:50</u> Matrix: <u>Water</u>

Sample Name: <u>ITC-BB-12-20190427-11</u> Sample Location/Comments: <u>BB-12</u>

Sample Comments:

- W				
Analysis	Hold time (days)	Expires	Comments	
OSRTI PFC	28	May-25-19 08:50		

Sample ID: <u>1905002-38</u> Sampled: <u>Apr-28-19 08:20</u> Matrix: <u>Water</u>

Sample Name: ITC-BB-12-20190428-11 Sample Location/Comments: BB-12

Sample Comments:

Analysis	Hold time (days)	Expires	Comments
OSRTI PFC	28	May-26-19 08:20	

1905002

US EPA Region 5 Chicago Regional Laboratory

Client: Region 6, US EPA Project Manager: Angela Ockrassa Davis

Project: R06 Deer Park PFAS Project Number: [none]

Sample ID: <u>1905002-39</u> Sampled: <u>Apr-29-19 08:10</u> Matrix: <u>Water</u>

Sample Name: ITC-BB-12-20190429-11 Sample Location/Comments: BB-12

Sample Comments:

Analysis	Hold time (days)	Expires	Comments
OSRTI PFC	28	May-27-19 08:10	

Sample ID: <u>1905002-40</u> Sampled: <u>Apr-26-19 11:35</u> Matrix: <u>Water</u>

Sample Name: <u>ITC-TB-03-20190426-11</u> Sample Location/Comments: <u>TB-03</u>

Sample Comments:

Analysis	Hold time (days)	Expires	Comments	
OSRTI PFC	28	May-24-19 11:35		

Sample ID: <u>1905002-41</u> Sampled: <u>Apr-27-19 08:50</u> Matrix: <u>Water</u>

Sample Name: <u>ITC-TB-03-20190427-11</u> Sample Location/Comments: <u>TB-03</u>

Sample Comments:

	Analysis	Hold time (days)	Expires	Comments	
,	OSRTI PFC	28	May-25-19 08:50		

Sample ID: <u>1905002-42</u> Sampled: <u>Apr-26-19 11:25</u> Matrix: <u>Water</u>

Sample Name: <u>ITC-TB-04-20190426-11</u> Sample Location/Comments: <u>TB-04</u>

Sample Comments:

Analysis	Hold time (days)	Expires	Comments
OSRTI PFC	28	May-24-19 11:25	

Sample ID: <u>1905002-43</u> Sampled: <u>Apr-27-19 09:30</u> Matrix: <u>Water</u>

Sample Name: <u>ITC-TB-04-20190427-11</u> Sample Location/Comments: <u>TB-04</u>

Sample Comments:

Analysis	Hold time (days)	Expires	Comments	
OSRTI PFC	28	May-25-19 09:30		

1905002

US EPA Region 5 Chicago Regional Laboratory

Client: Region 6, US EPA Project Manager: Angela Ockrassa Davis

Project: R06 Deer Park PFAS Project Number: [none]

Sample ID: <u>1905002-44</u> Sampled: <u>Apr-27-19 08:30</u> Matrix: <u>Water</u>

Sample Name: <u>ITC-TB-05-20190427-11</u> Sample Location/Comments: <u>TB-05</u>

Sample Comments:

Analysis	Hold time (days)	Expires	Comments	
OSRTI PFC	28	May-25-19 08:30		

REVIEWED

By Amanda Wroble at 10:07 am, May 02, 2019

Reviewed By Date

Chicago Regional Laboratory

536 South Clark Street, Chicago, IL 60605 Phone:(312)353-8370 Fax:(312)886-2591

Region 6, US EPA Project: R06 Deer Park PFAS

10625 Fallstone RoadProject Number: [none]Reported:Houston TX, 77099Project Manager: Matthew LoeselMay-02-19 16:52

Analysis by LC MS MS US EPA Region 5 Chicago Regional Laboratory

ITC-BB-01-20190426-11 (1905002-01)		Matr	ix: Water	Sample	ed: Apr-26	-19 08:45	Received: Apr-30-19 09:00			
Analyte	Result	Flags / Qualifiers	MDL	Reporting Limit	Units	Dilution	Batch	Prepared	Analyzed	
perfluorobutanoate	U			44.7	ng/L	1	B19E001	May-01-19	May-02-19	
perfluoropentanoate	U			44.7	"	"	"	"	"	
perfluorohexanoate	36.6			8.94	"	"	"	"	"	
perfluoroheptanoate	14.9			8.94	"	"	"	"	"	
perfluorooctanoate	10.3			8.94	"	"	"	"	"	
perfluorononanoate	U			8.94	"	"	"	"	"	
perfluorodecanoate	U			8.94	"	"	"	"	"	
perfluoroundecanoate	U			8.94	"	"	"	"	"	
perfluorododecanoate	U			8.94	"	"	"	"	"	
perfluorotridecanoate	U			8.94	"	"	"	"	"	
perfluorotetradecanoate	U			8.94	"	"	"	"	"	
perfluorobutyl sulfonate	13.6			8.94	"	"	"	"	"	
perfluorohexyl sulfonate	18.3			8.94	"	"	"	"	"	
perfluorooctyl sulfonate	52.6			8.94	"	"	"	"	"	
1H,1H,2H,2H-perfluorohexane sulfonate (4:2 FTS)	U			8.94	"	"	"	"	"	
perfluoro-1-pentanesulfonate (PFPeS)	U			8.94	"	"	"	"	"	
1H,1H,2H,2H-perfluorooctane sulfonate (6:2 FTS)	341			8.94	"	"	"	"	"	
perfluoro-1-heptanesulfonate (PFHpS)	U			8.94	"	"	"	"	"	
perfluoro-1-octanesulfonamide (FOSA)	U			8.94	"	"	"	"	"	
1H,1H,2H,2H-perfluorodecane sulfonate (8:2 FTS)	U			8.94	"	"	"	"	"	
perfluoro-1-nonanesulfonate (PFNS)	U			8.94	"	"	"	"	"	
N-MeFOSAA	U			8.94	"	"	"	"	"	
N-EtFOSAA	U			8.94	"	"	"	"	"	
perfluoro-1-decanesulfonate (PFDS)	U			8.94	"	"	"	"	"	
Surogate	Result			%REC		%REC Limits	Batch	Prepared	Analyzed	
D5-N-EtFOSAA	96.5			76.4%		70-130	"	"	"	
D3-N-MeFOSAA	91.3			72.3%		70-130	"	"	"	
perfluoro- (1,2-13C2)decanesulfonateC13(2)-8:2 FTS	79.3	Q		64.9%		70-130	"	"	"	
perfluoro- (1,2-13C2)octanesulfonateC13(2)-6:2 FTS	97.0			81.0%		70-130	"	"	"	
perfluoro(1,2-13C2)hexanesulfonateC13(2)-4:2 FTS	80.6	Q		68.2%		70-130	"	"	"	

Chicago Regional Laboratory

536 South Clark Street, Chicago, IL 60605 Phone:(312)353-8370 Fax:(312)886-2591

Region 6, US EPA Project: R06 Deer Park PFAS

10625 Fallstone RoadProject Number: [none]Reported:Houston TX, 77099Project Manager: Matthew LoeselMay-02-19 16:52

Analysis by LC MS MS US EPA Region 5 Chicago Regional Laboratory

ГС-ВВ-01-20190426-11 (1905002-01)		Matr	ix: Water	Sample	Sampled: Apr-26-19 08:45			Received: Apr-30-19 09:00		
Analyte	Result	Flags / Qualifiers	MDL	Reporting Limit	Units	Dilution	Batch	Prepared	Analyzed	
Surogate	Result			%REC		%REC Limits	Batch	Prepared	Analyzed	
M9PFNA	94.6			74.9%		70-130	B19E001	May-01-19	May-02-19	
M8PFOSA	100			79.3%		70-130	"	"	"	
M8PFOS	95.2			78.8%		70-130	"	"	"	
M8PFOA	98.0			77.6%		70-130	"	"	"	
M7PFUnA	91.8			72.7%		70-130	"	"	"	
M6PFDA	93.3			73.9%		70-130	"	"	"	
M5PFPeA	112			88.5%		70-130	"	"	"	
M5PFHxA	110			86.8%		70-130	"	"	"	
M4PFHpA	103			81.3%		70-130	"	"	"	
M3PFHxS	99.6			83.4%		70-130	"	"	"	
M3PFBS	104			88.5%		70-130	"	"	"	
M2PFTreA	9.52	Q		7.54%		70-130	"	"	"	
MPFDoA	82.3	Q		65.2%		70-130	"	"	"	
MPFBA	122			97.0%		70-130	"	"	"	

ITC-BB-01-20190426-15 (1905002-02)		Matr	ix: Water	Sample	Sampled: Apr-26-19 11:15			Received: Apr-30-19 09:00		
Analyte	Result	Flags / Qualifiers	MDL	Reporting Limit	Units	Dilution	Batch	Prepared	Analyzed	
perfluorobutanoate	U			48.9	ng/L	1	B19E001	May-01-19	May-02-19	
perfluoropentanoate	U			48.9	"	"	"	"	"	
perfluorohexanoate	U			9.77	"	"	"	"	"	
perfluoroheptanoate	U			9.77	"	"	"	"	"	
perfluorooctanoate	U			9.77	"	"	"	"	"	
perfluorononanoate	U			9.77	"	"	"	"	"	
perfluorodecanoate	U			9.77	"	"	"	"	"	
perfluoroundecanoate	U			9.77	"	"	"	"	"	
perfluorododecanoate	U			9.77	"	"	"	"	"	
perfluorotridecanoate	U			9.77	"	"	"	"	"	
perfluorotetradecanoate	U			9.77	"	"	"	II .	"	
perfluorobutyl sulfonate	U			9.77	"	"	"	"	"	
perfluorohexyl sulfonate	U			9.77	"	"	"	"	"	
perfluorooctyl sulfonate	U			9.77	"	"	"	II .	"	
1H,1H,2H,2H-perfluorohexane	U			9.77	"	"	"	"	"	
sulfonate (4:2 FTS)										

Chicago Regional Laboratory

536 South Clark Street, Chicago, IL 60605 Phone:(312)353-8370 Fax:(312)886-2591

Region 6, US EPA Project: R06 Deer Park PFAS

10625 Fallstone RoadProject Number: [none]Reported:Houston TX, 77099Project Manager: Matthew LoeselMay-02-19 16:52

Analysis by LC MS MS US EPA Region 5 Chicago Regional Laboratory

TTC-BB-01-20190426-15 (1905002-02)		Matr	ix: Water	Sampled: Apr-26-19 11:15			Received: Apr-30-19 09:00		
Analyte	Result	Flags / Qualifiers	MDL	Reporting Limit	Units	Dilution	Batch	Prepared	Analyzed
perfluoro-1-pentanesulfonate	U			9.77	ng/L	1	B19E001	May-01-19	May-02-19
(PFPeS)									
1H,1H,2H,2H-perfluorooctane	U			9.77	"	"	"	"	"
sulfonate (6:2 FTS)	**			0.77	"	,,	"	"	"
perfluoro-1-heptanesulfonate	U			9.77			"		"
(PFHpS) perfluoro-1-octanesulfonamide	U			9.77	"	"	"	"	"
(FOSA)	•			2.77					
1H,1H,2H,2H-perfluorodecane	U			9.77	"	"	"	"	"
sulfonate (8:2 FTS)									
perfluoro-1-nonanesulfonate (PFNS)	U			9.77	"	"	"	"	"
N-MeFOSAA	U			9.77	"	"	"	"	"
N-EtFOSAA	U			9.77	"	"	"	"	"
perfluoro-1-decanesulfonate (PFDS)	U			9.77	"	"	"	"	"
						%REC			
Surogate	Result			%REC		Limits	Batch	Prepared	Analyzed
D5-N-EtFOSAA	136			89.0%		70-130	"	"	"
D3-N-MeFOSAA	137			89.6%		70-130	"	"	"
perfluoro-	118			79.7%		70-130	"	"	"
(1,2-13C2)decanesulfonateC13(2)-8:2 FTS perfluoro-	117			80.8%		70-130	"	"	"
(1,2-13C2)octanesulfonateC13(2)-6:2 FTS	117			00.070		70-130			
perfluoro(1,2-13C2)hexanesulfonateC13(2	116			81.4%		70-130	"	"	"
)-4:2 FTS							"	"	"
M9PFNA	128			84.1%		70-130			
M8PFOSA	132			86.6%		70-130	"	"	"
M8PFOS	129			88.6%		70-130	"	"	"
M8PFOA	126			82.6%		70-130	"	"	"
M7PFUnA	129			84.4%		70-130	"	"	"
M6PFDA	130			84.9%		70-130	"	"	"
M5PFPeA	134			87.8%		70-130	"	"	"
M5PFHxA	136			89.2%		70-130	"	"	"
M4PFHpA	133			87.2%		70-130	"	"	"
M3PFHxS	129			89.5%		70-130	"	"	"
M3PFBS	131			92.5%		70-130	"	"	"
M2PFTreA	119			77.9%		70-130	"	"	"
MPFDoA	133			86.9%		70-130	"	"	"
MPFBA	138			90.6%		70-130	"	"	"

Chicago Regional Laboratory

536 South Clark Street, Chicago, IL 60605 Phone:(312)353-8370 Fax:(312)886-2591

Region 6, US EPA Project: R06 Deer Park PFAS

10625 Fallstone RoadProject Number: [none]Reported:Houston TX, 77099Project Manager: Matthew LoeselMay-02-19 16:52

Analysis by LC MS MS US EPA Region 5 Chicago Regional Laboratory

ITC-BB-01-20190427-11 (1905002-03)		Matr	ix: Water	Sample	ed: Apr-27	'-19 09:15	Received: Apr-30-19 09:00		
Analyte	Result	Flags / Qualifiers	MDL	Reporting Limit	Units	Dilution	Batch	Prepared	Analyzed
perfluorobutanoate	U			42.5	ng/L	1	B19E001	May-01-19	May-02-19
perfluoropentanoate	U			42.5	"	"	"	"	"
perfluorohexanoate	34.0			8.49	"	"	"	"	"
perfluoroheptanoate	13.2			8.49	"	"	"	"	"
perfluorooctanoate	9.72			8.49	"	"	"	"	"
perfluorononanoate	U			8.49	"	"	"	"	"
perfluorodecanoate	U			8.49	"	"	"	"	"
perfluoroundecanoate	U			8.49	"	"	"	"	"
perfluorododecanoate	U			8.49	"	"	"	"	"
perfluorotridecanoate	U			8.49	"	"	"	"	"
perfluorotetradecanoate	U			8.49	"	"	"	"	"
perfluorobutyl sulfonate	12.5			8.49	"	"	"	"	"
perfluorohexyl sulfonate	14.3			8.49	"	"	"	"	"
perfluorooctyl sulfonate	45.7			8.49	"	"	"	"	"
1H,1H,2H,2H-perfluorohexane sulfonate (4:2 FTS)	U			8.49	"	"	"	"	"
perfluoro-1-pentanesulfonate (PFPeS)	U			8.49	"	"	"	"	"
1H,1H,2H,2H-perfluorooctane sulfonate (6:2 FTS)	323			8.49	"	"	"	"	"
perfluoro-1-heptanesulfonate (PFHpS)	U			8.49	"	"	"	"	"
perfluoro-1-octanesulfonamide (FOSA)	U			8.49	"	"	"	**	"
1H,1H,2H,2H-perfluorodecane sulfonate (8:2 FTS)	U			8.49	"	"	"	"	"
perfluoro-1-nonanesulfonate (PFNS)	U			8.49	"	"	"	"	"
N-MeFOSAA	U			8.49	"	"	"	"	"
N-EtFOSAA	U			8.49	"	"	"	"	"
perfluoro-1-decanesulfonate (PFDS)	U			8.49	"	"	"	"	"
Surogate	Result			%REC		%REC Limits	Batch	Prepared	Analyzed
D5-N-EtFOSAA	82.1			73.5%		70-130	"	"	"
D3-N-MeFOSAA	85.6			76.6%		70-130	"	"	"
perfluoro- (1,2-13C2)decanesulfonateC13(2)-8:2 FTS	72.9	Q		67.4%		70-130	"	"	"
perfluoro- (1,2-13C2)octanesulfonateC13(2)-6:2 FTS	90.0			84.9%		70-130	"	"	"
perfluoro(1,2-13C2)hexanesulfonateC13(2)-4:2 FTS	75.6			72.3%		70-130	"	"	"

Chicago Regional Laboratory

536 South Clark Street, Chicago, IL 60605 Phone:(312)353-8370 Fax:(312)886-2591

Region 6, US EPA Project: R06 Deer Park PFAS

10625 Fallstone RoadProject Number: [none]Reported:Houston TX, 77099Project Manager: Matthew LoeselMay-02-19 16:52

Analysis by LC MS MS US EPA Region 5 Chicago Regional Laboratory

ITC-BB-01-20190427-11 (1905002-03)		Matr	ix: Water	Sample	Sampled: Apr-27-19 09:15			Received: Apr-30-19 09:00		
Analyte	Result	Flags / Qualifiers	MDL	Reporting Limit	Units	Dilution	Batch	Prepared	Analyzed	
Surogate	Result			%REC		%REC Limits	Batch	Prepared	Analyzed	
M9PFNA	86.6			77.5%		70-130	B19E001	May-01-19	May-02-19	
M8PFOSA	85.7			76.7%		70-130	"	"	"	
M8PFOS	88.4			82.7%		70-130	"	"	"	
M8PFOA	89.5			80.1%		70-130	"	"	"	
M7PFUnA	78.5			70.2%		70-130	"	"	"	
M6PFDA	88.6			79.3%		70-130	"	"	"	
M5PFPeA	102			90.9%		70-130	"	"	"	
M5PFHxA	105			93.8%		70-130	"	"	"	
M4PFHpA	94.4			84.4%		70-130	"	"	"	
M3PFHxS	91.6			86.7%		70-130	"	"	"	
M3PFBS	97.0			93.4%		70-130	"	"	"	
M2PFTreA	0.776	Q		0.694%		70-130	"	"	"	
MPFDoA	64.2	Q		57.4%		70-130	"	"	"	
MPFBA	115			103%		70-130	"	"	"	

ITC-BB-01-20190428-11 (1905002-04)		Matr	ix: Water	Sample	ed: Apr-28-	-19 08:40	Received:	Apr-30-19 09	:00
Analyte	Result	Flags / Qualifiers	MDL	Reporting Limit	Units	Dilution	Batch	Prepared	Analyzed
perfluorobutanoate	U			45.2	ng/L	1	B19E001	May-01-19	May-02-19
perfluoropentanoate	U			45.2	"	"	"	"	"
perfluorohexanoate	37.8			9.03	"	"	"	"	"
perfluoroheptanoate	13.7			9.03	"	"	"	"	"
perfluorooctanoate	9.15			9.03	"	"	"	"	"
perfluorononanoate	U			9.03	"	"	"	"	"
perfluorodecanoate	U			9.03	"	"	"	"	"
perfluoroundecanoate	U			9.03	"	"	"	"	"
perfluorododecanoate	U			9.03	"	"	"	"	"
perfluorotridecanoate	U			9.03	"	"	"	II .	"
perfluorotetradecanoate	U			9.03	"	"	"	"	"
perfluorobutyl sulfonate	12.7			9.03	"	"	"	"	"
perfluorohexyl sulfonate	13.1			9.03	"	"	"	"	"
perfluorooctyl sulfonate	43.3			9.03	"	"	"	"	"
1H,1H,2H,2H-perfluorohexane	U			9.03	"	"	"	"	"
sulfonate (4:2 FTS)									

Chicago Regional Laboratory

536 South Clark Street, Chicago, IL 60605 Phone:(312)353-8370 Fax:(312)886-2591

Region 6, US EPA Project: R06 Deer Park PFAS

10625 Fallstone RoadProject Number: [none]Reported:Houston TX, 77099Project Manager: Matthew LoeselMay-02-19 16:52

Analysis by LC MS MS US EPA Region 5 Chicago Regional Laboratory

ITC-BB-01-20190428-11 (1905002-04)	1	Matr	ix: Water	Sample	ed: Apr-28	3-19 08:40	Received: Apr-30-19 09:00		
Analyte	Result	Flags / Qualifiers	MDL	Reporting Limit	Units	Dilution	Batch	Prepared	Analyzed
perfluoro-1-pentanesulfonate	U			9.03	ng/L	1	B19E001	May-01-19	May-02-19
(PFPeS)									
1H,1H,2H,2H-perfluorooctane	295			9.03	"	n .	"	"	"
sulfonate (6:2 FTS)	U			0.02	"	"	"	"	"
perfluoro-1-heptanesulfonate (PFHpS)	U			9.03					
perfluoro-1-octanesulfonamide	U			9.03	"	"	"	"	"
(FOSA)									
1H,1H,2H,2H-perfluorodecane	U			9.03	"	"	"	"	"
sulfonate (8:2 FTS)									
perfluoro-1-nonanesulfonate (PFNS)	U			9.03	"	"	"	"	"
N-MeFOSAA	U			9.03	"	"	"	"	"
N-EtFOSAA	U			9.03	"	"	"	"	"
perfluoro-1-decanesulfonate (PFDS)	U			9.03	"	"	"	"	"
						%REC			
Surogate	Result			%REC		Limits	Batch	Prepared	Analyzed
D5-N-EtFOSAA	100			77.8%		70-130	"	"	"
D3-N-MeFOSAA	96.8			75.0%		70-130	"	"	"
perfluoro-	83.3	Q		66.6%		70-130	"	"	"
(1,2-13C2)decanesulfonateC13(2)-8:2 FTS perfluoro-	98.9			80.7%		70-130	"	"	"
perfluoro- (1,2-13C2)octanesulfonateC13(2)-6:2 FTS	98.9			00.770		/0-130			
perfluoro(1,2-13C2)hexanesulfonateC13(2	86.0			71.3%		70-130	"	"	"
)-4:2 FTS							"	"	"
M9PFNA	101			78.5%		70-130			
M8PFOSA	104			80.9%		70-130	"	"	"
M8PFOS	103			83.4%		70-130	"	"	"
M8PFOA	104			80.7%		70-130	"	"	"
M7PFUnA	99.9			77.4%		70-130	"	"	"
M6PFDA	101			78.2%		70-130	"	"	"
M5PFPeA	116			90.0%		70-130	"	"	"
M5PFHxA	124			95.7%		70-130	"	"	"
M4PFHpA	114			88.4%		70-130	"	"	"
M3PFHxS	108			88.3%		70-130	"	"	"
M3PFBS	115			96.0%		70-130	"	"	"
M2PFTreA	22.1	Q		17.1%		70-130	"	"	"
MPFDoA	89.1	Q		69.0%		70-130	"	"	"
MPFBA	130	Ų		101%		70-130	"	"	"
WII I'DA	130			10170		/0-130			

Chicago Regional Laboratory

536 South Clark Street, Chicago, IL 60605 Phone:(312)353-8370 Fax:(312)886-2591

Region 6, US EPA Project: R06 Deer Park PFAS

10625 Fallstone RoadProject Number: [none]Reported:Houston TX, 77099Project Manager: Matthew LoeselMay-02-19 16:52

Analysis by LC MS MS US EPA Region 5 Chicago Regional Laboratory

Analyte perfluorobutanoate perfluoropentanoate perfluorohexanoate perfluorooctanoate perfluorooctanoate perfluorononanoate perfluorodecanoate perfluorodecanoate	Result U U 38.5 14.6 9.43 U U	Flags / Qualifiers	MDL	Reporting Limit 44.5 44.5 8.89 8.89	Units ng/L	Dilution 1	Batch B19E001	Prepared May-01-19	Analyzed May-02-19
perfluoropentanoate perfluorohexanoate perfluoroheptanoate perfluorooctanoate perfluorononanoate perfluorodecanoate	U 38.5 14.6 9.43 U			44.5 8.89	"			May-01-19	May-02-19
perfluorohexanoate perfluoroheptanoate perfluorooctanoate perfluorononanoate perfluorodecanoate	38.5 14.6 9.43 U			8.89		"	"		
perfluoroheptanoate perfluorooctanoate perfluorononanoate perfluorodecanoate	14.6 9.43 U							"	"
perfluorooctanoate perfluorononanoate perfluorodecanoate	9.43 U			0 00	"	"	"	"	"
perfluorononanoate perfluorodecanoate	U U			8.89	"	"	"	"	"
perfluorodecanoate	U			8.89	"	"	"	"	"
				8.89	"	"	"	"	"
nerfluoroundecanoate				8.89	"	"	"	"	"
permuordinuccandate	U			8.89	"	"	"	"	"
perfluorododecanoate	U			8.89	"	"	"	"	"
perfluorotridecanoate	U			8.89	"	"	"	"	"
perfluorotetradecanoate	U			8.89	"	"	"	"	"
perfluorobutyl sulfonate	10.4			8.89	"	"	"	"	"
perfluorohexyl sulfonate	14.2			8.89	"	"	"	"	"
perfluorooctyl sulfonate	47.3			8.89	"	"	"	"	"
1H,1H,2H,2H-perfluorohexane	U			8.89	"	"	"	"	"
sulfonate (4:2 FTS)									
perfluoro-1-pentanesulfonate	U			8.89	"	"	"	"	"
(PFPeS)									
1H,1H,2H,2H-perfluorooctane	313			8.89	"	"	"	"	"
sulfonate (6:2 FTS)	w.y.			0.00	"	"	"	"	"
perfluoro-1-heptanesulfonate	U			8.89					
(PFHpS) perfluoro-1-octanesulfonamide	U			8.89	"	"	"	"	"
(FOSA)	·			0.07					
1H,1H,2H,2H-perfluorodecane	U			8.89	"	"	"	"	"
sulfonate (8:2 FTS)									
perfluoro-1-nonanesulfonate (PFNS)	U			8.89	"	"	"	"	"
N-MeFOSAA	U			8.89	"	"	"	"	"
N-EtFOSAA	U			8.89	"	"	"	"	"
perfluoro-1-decanesulfonate (PFDS)	U			8.89	"	"	"	"	"
						%REC			
Surogate	Result			%REC		%REC Limits	Batch	Prepared	Analyzed
D5-N-EtFOSAA	91.4			73.4%		70-130	"	"	"
D3-N-MeFOSAA	92.5			74.2%		70-130	"	"	"
perfluoro-	79.9	Q		66.3%		70-130	"	"	"
(1,2-13C2)decanesulfonateC13(2)-8:2 FTS									
perfluoro-	95.7			80.9%		70-130	"	"	"
(1,2-13C2)octanesulfonateC13(2)-6:2 FTS perfluoro(1,2-13C2)hexanesulfonateC13(2)-4:2 FTS	81.3	Q		69.8%		70-130	"	"	"

Chicago Regional Laboratory

536 South Clark Street, Chicago, IL 60605 Phone:(312)353-8370 Fax:(312)886-2591

Region 6, US EPA Project: R06 Deer Park PFAS

10625 Fallstone RoadProject Number: [none]Reported:Houston TX, 77099Project Manager: Matthew LoeselMay-02-19 16:52

Analysis by LC MS MS US EPA Region 5 Chicago Regional Laboratory

ITC-BB-01-20190429-11 (1905002-05)		Matr	ix: Water	Sample	ed: Apr-29	9-19 08:30	Received:	Apr-30-19 09	00:
Analyte	Result	Flags / Qualifiers	MDL	Reporting Limit	Units	Dilution	Batch	Prepared	Analyzed
Surogate	Result			%REC		%REC Limits	Batch	Prepared	Analyzed
M9PFNA	99.9			80.2%		70-130	B19E001	May-01-19	May-02-19
M8PFOSA	97.2			78.1%		70-130	"	"	"
M8PFOS	100			84.2%		70-130	"	"	"
M8PFOA	101			81.1%		70-130	"	"	"
M7PFUnA	91.5			73.4%		70-130	"	"	"
M6PFDA	97.4			78.2%		70-130	"	"	"
M5PFPeA	117			94.3%		70-130	"	"	"
M5PFHxA	119			95.8%		70-130	"	"	"
M4PFHpA	112			89.5%		70-130	"	"	"
M3PFHxS	102			86.7%		70-130	"	"	"
M3PFBS	111			95.7%		70-130	"	"	"
M2PFTreA	11.1	Q		8.92%		70-130	"	"	"
MPFDoA	83.6	Q		67.1%		70-130	"	"	"
MPFBA	128			102%		70-130	"	"	"

ITC-BB-02-20190426-11 (1905002-06)		Matr	ix: Water	Sample	ed: Apr-26-	19 08:55	Received:	Apr-30-19 09	:00
Analyte	Result	Flags / Qualifiers	MDL	Reporting Limit	Units	Dilution	Batch	Prepared	Analyzed
perfluorobutanoate	U			44.4	ng/L	1	B19E001	May-01-19	May-02-19
perfluoropentanoate	U			44.4	"	"	"	"	"
perfluorohexanoate	37.4			8.89	"	"	"	"	"
perfluoroheptanoate	15.1			8.89	"	"	"	"	"
perfluorooctanoate	9.78			8.89	"	"	"	"	"
perfluorononanoate	U			8.89	"	"	"	"	"
perfluorodecanoate	U			8.89	"	"	"	"	"
perfluoroundecanoate	U			8.89	"	"	"	"	"
perfluorododecanoate	U			8.89	"	"	"	"	"
perfluorotridecanoate	U			8.89	"	"	"	"	"
perfluorotetradecanoate	U			8.89	"	"	"	"	"
perfluorobutyl sulfonate	13.9			8.89	"	"	"	"	"
perfluorohexyl sulfonate	14.1			8.89	"	"	"	"	"
perfluorooctyl sulfonate	53.1			8.89	"	"	"	"	"
1H,1H,2H,2H-perfluorohexane	U			8.89	"	"	"	"	"
sulfonate (4:2 FTS)									

Chicago Regional Laboratory

536 South Clark Street, Chicago, IL 60605 Phone:(312)353-8370 Fax:(312)886-2591

Region 6, US EPA Project: R06 Deer Park PFAS

10625 Fallstone RoadProject Number: [none]Reported:Houston TX, 77099Project Manager: Matthew LoeselMay-02-19 16:52

Analysis by LC MS MS US EPA Region 5 Chicago Regional Laboratory

ITC-BB-02-20190426-11 (1905002-06)		Matrix: Water		Sampled: Apr-26-19 08:55			Received: Apr-30-19 09:00		
Analyte	Result	Flags / Qualifiers	MDL	Reporting Limit	Units	Dilution	Batch	Prepared	Analyzed
perfluoro-1-pentanesulfonate	U			8.89	ng/L	1	B19E001	May-01-19	May-02-19
(PFPeS)									
1H,1H,2H,2H-perfluorooctane	342			8.89	"	"	"	"	"
sulfonate (6:2 FTS)	U			0.00	"	"	"	"	"
perfluoro-1-heptanesulfonate (PFHpS)	U			8.89					
perfluoro-1-octanesulfonamide	U			8.89	"	"	"	"	"
(FOSA)									
1H,1H,2H,2H-perfluorodecane	U			8.89	"	"	"	"	"
sulfonate (8:2 FTS)									
perfluoro-1-nonanesulfonate (PFNS)	U			8.89	"	"	"	"	"
N-MeFOSAA	U			8.89	"	"	"	"	"
N-EtFOSAA	U			8.89	"	"	"	"	"
perfluoro-1-decanesulfonate (PFDS)	U			8.89	"	"	"	"	"
	D. Iv			N/DEC		%REC	D. (I	D 1	A malvira d
Surogate	Result			%REC		Limits	Batch	Prepared	Analyzed
D5-N-EtFOSAA	97.0			78.0%		70-130	"	"	
D3-N-MeFOSAA	95.4			76.7%		70-130			
perfluoro- (1,2-13C2)decanesulfonateC13(2)-8:2 FTS	82.6	Q		68.6%		70-130	"	"	"
perfluoro-	99.1			83.9%		70-130	"	"	"
(1,2-13C2)octanesulfonateC13(2)-6:2 FTS	87.4			75.1%		70.120	"	"	"
perfluoro(1,2-13C2)hexanesulfonateC13(2)-4:2 FTS	87.4			/3.1%		70-130			
M9PFNA	98.3			79.0%		70-130	"	"	"
M8PFOSA	97.3			78.2%		70-130	"	"	"
M8PFOS	104			87.3%		70-130	"	"	"
M8PFOA	102			82.2%		70-130	"	"	"
M7PFUnA	94.6			76.0%		70-130	"	"	"
M6PFDA	97.1			78.0%		70-130	"	"	"
M5PFPeA	117			93.8%		70-130	"	"	"
M5PFHxA	124			100%		70-130	"	"	"
M4PFHpA	114			91.9%		70-130	"	"	"
M3PFHxS	105			88.9%		70-130	"	"	"
M3PFBS	117			102%		70-130	"	"	"
							"	<i>"</i>	"
M2PFTreA	14.5	Q		11.7%		70-130			
MPFDoA	86.7	Q		69.7%		70-130	"	"	"
MPFBA	128			103%		70-130	"	"	"

Chicago Regional Laboratory

536 South Clark Street, Chicago, IL 60605 Phone:(312)353-8370 Fax:(312)886-2591

Region 6, US EPA Project: R06 Deer Park PFAS

10625 Fallstone RoadProject Number: [none]Reported:Houston TX, 77099Project Manager: Matthew LoeselMay-02-19 16:52

Analysis by LC MS MS US EPA Region 5 Chicago Regional Laboratory

TTC-BB-02-20190426-12 (1905002-07)		Matr	ix: Water	Sample	ed: Apr-26	-19 08:55	Received:	Apr-30-19 09	:00
Analyte	Result	Flags / Qualifiers	MDL	Reporting Limit	Units	Dilution	Batch	Prepared	Analyzed
perfluorobutanoate	U			44.9	ng/L	1	B19E001	May-01-19	May-02-19
perfluoropentanoate	U			44.9	"	"	"	"	"
perfluorohexanoate	38.6			8.99	"	"	"	"	"
perfluoroheptanoate	14.1			8.99	"	"	"	"	"
perfluorooctanoate	9.75			8.99	"	"	"	"	"
perfluorononanoate	U			8.99	"	"	"	"	"
perfluorodecanoate	U			8.99	"	"	"	"	"
perfluoroundecanoate	U			8.99	"	"	"	"	"
perfluorododecanoate	U			8.99	"	"	"	"	"
perfluorotridecanoate	U			8.99	"	ıı .	"	"	"
perfluorotetradecanoate	U			8.99	"	"	"	"	"
perfluorotett adecanoate	13.3			8.99	"	"	"	"	"
•	16.9			8.99	"	"	"	"	"
perfluorohexyl sulfonate				8.99	"	"	"	"	"
perfluorooctyl sulfonate	51.9				"	"	"	"	"
H,1H,2H,2H-perfluorohexane	U			8.99		"	"		"
ulfonate (4:2 FTS) perfluoro-1-pentanesulfonate	U			8.99	"	"	ıı .	"	"
PFPeS)	· ·			0.77					
H,1H,2H,2H-perfluorooctane	352			8.99	"	"	"	"	"
ulfonate (6:2 FTS)									
oerfluoro-1-heptanesulfonate	U			8.99	"	"	"	"	"
PFHpS)									
perfluoro-1-octanesulfonamide	U			8.99	"	"	"	"	"
FOSA)	U			8.99	"	"	"	"	"
H,1H,2H,2H-perfluorodecane sulfonate (8:2 FTS)	U			8.99					
perfluoro-1-nonanesulfonate (PFNS)	U			8.99	"	"	"	"	"
N-MeFOSAA	U			8.99	"	ıı .	"	"	"
N-EtFOSAA	U			8.99	"	"	"	"	"
perfluoro-1-decanesulfonate (PFDS)	U			8.99	"	"	"	"	"
Armuoro-1-uccanesunonate (1 FD3)				0.77					
Surogate	Result			%REC		%REC	Batch	Prepared	Analyzed
D5-N-EtFOSAA	105			82.0%		70-130	naich	"	"
							"	"	"
O3-N-MeFOSAA	100			78.6%		70-130	"	"	
perfluoro- (1,2-13C2)decanesulfonateC13(2)-8:2 FTS	88.1			71.4%		70-130	"	"	"
1,2-13C2)aecanesuyonateC13(2)-8:2 F13 perfluoro-	103			84.7%		70-130	"	"	"
1,2-13C2)octanesulfonateC13(2)-6:2 FTS									
perfluoro(1,2-13C2)hexanesulfonateC13(2 -4:2 FTS	93.7			78.5%		70-130	"	"	"

Chicago Regional Laboratory

536 South Clark Street, Chicago, IL 60605 Phone:(312)353-8370 Fax:(312)886-2591

Region 6, US EPA Project: R06 Deer Park PFAS

10625 Fallstone RoadProject Number:[none]Reported:Houston TX, 77099Project Manager:Matthew LoeselMay-02-19 16:52

Analysis by LC MS MS US EPA Region 5 Chicago Regional Laboratory

ITC-BB-02-20190426-12 (1905002-07)		Matr	ix: Water	Sample	ed: Apr-2	6-19 08:55	Received:	Apr-30-19 09	:00
Analyte	Result	Flags / Qualifiers	MDL	Reporting Limit	Units	Dilution	Batch	Prepared	Analyzed
Surogate	Result			%REC		%REC Limits	Batch	Prepared	Analyzed
M9PFNA	102			79.8%		70-130	B19E001	May-01-19	May-02-19
M8PFOSA	109			85.2%		70-130	"	"	"
M8PFOS	101			83.1%		70-130	"	"	"
M8PFOA	105			82.4%		70-130	"	"	"
M7PFUnA	100			78.4%		70-130	"	"	"
M6PFDA	102			79.7%		70-130	"	"	"
M5PFPeA	119			93.5%		70-130	"	"	"
M5PFHxA	124			97.3%		70-130	"	"	"
M4PFHpA	115			90.4%		70-130	"	"	"
M3PFHxS	109			90.3%		70-130	"	"	"
M3PFBS	120			101%		70-130	"	"	"
M2PFTreA	23.9	Q		18.7%		70-130	"	"	"
MPFDoA	92.7			72.6%		70-130	"	"	"
MPFBA	134			105%		70-130	"	"	"

ITC-BB-02-20190427-11 (1905002-08)		Matr	ix: Water	Sample	ed: Apr-27-	-19 09:30	Received:	Apr-30-19 09	:00
Analyte	Result	Flags / Qualifiers	MDL	Reporting Limit	Units	Dilution	Batch	Prepared	Analyzed
perfluorobutanoate	U			42.9	ng/L	1	B19E001	May-01-19	May-02-19
perfluoropentanoate	U			42.9	"	"	"	"	"
perfluorohexanoate	84.2			8.59	"	"	"	"	"
perfluoroheptanoate	16.7			8.59	"	"	"	"	"
perfluorooctanoate	10.1			8.59	"	"	"	"	"
perfluorononanoate	U			8.59	"	"	"	"	"
perfluorodecanoate	U			8.59	"	"	"	"	"
perfluoroundecanoate	U			8.59	"	"	"	"	"
perfluorododecanoate	U			8.59	"	"	"	"	"
perfluorotridecanoate	U			8.59	"	"	"	"	"
perfluorotetradecanoate	U			8.59	"	"	n .	II .	"
perfluorobutyl sulfonate	13.1			8.59	"	"	"	"	"
perfluorohexyl sulfonate	18.5			8.59	"	"	"	"	"
perfluorooctyl sulfonate	97.4			8.59	"	"	"	"	"
1H,1H,2H,2H-perfluorohexane sulfonate (4:2 FTS)	U			8.59	"	"	"	"	"

Chicago Regional Laboratory

536 South Clark Street, Chicago, IL 60605 Phone:(312)353-8370 Fax:(312)886-2591

Region 6, US EPA Project: R06 Deer Park PFAS

10625 Fallstone RoadProject Number: [none]Reported:Houston TX, 77099Project Manager: Matthew LoeselMay-02-19 16:52

Analysis by LC MS MS US EPA Region 5 Chicago Regional Laboratory

ITC-BB-02-20190427-11 (1905002-08)		Matr	ix: Water	Sample	ed: Apr-27	-19 09:30	Received: Apr-30-19 09:00		
Analyte	Result	Flags / Qualifiers	MDL	Reporting Limit	Units	Dilution	Batch	Prepared	Analyzed
perfluoro-1-pentanesulfonate	U			8.59	ng/L	1	B19E001	May-01-19	May-02-19
(PFPeS)									
1H,1H,2H,2H-perfluorooctane	504			8.59	"	"	"	"	"
sulfonate (6:2 FTS)	U			0.50	"	"	"	"	"
perfluoro-1-heptanesulfonate (PFHpS)	U			8.59					
perfluoro-1-octanesulfonamide	U			8.59	"	"	"	"	"
(FOSA)									
1H,1H,2H,2H-perfluorodecane	U			8.59	"	"	"	"	"
sulfonate (8:2 FTS)									
perfluoro-1-nonanesulfonate (PFNS)	U			8.59	"	"	"	"	"
N-MeFOSAA	U			8.59	"	"	"	"	"
N-EtFOSAA	U			8.59	"	"	"	"	"
perfluoro-1-decanesulfonate (PFDS)	U			8.59	"	"	"	"	"
	-			N/BEG		%REC			
Surogate	Result			%REC		Limits	Batch	Prepared	Analyzed "
D5-N-EtFOSAA	89.0			77.6%		70-130		"	
D3-N-MeFOSAA	85.2			74.3%		70-130	"		"
perfluoro- (1,2-13C2)decanesulfonateC13(2)-8:2 FTS	75.8	Q		68.2%		70-130	"	"	"
perfluoro- (1,2-13C2)octanesulfonateC13(2)-6:2 FTS	102			93.5%		70-130	"	"	"
perfluoro(1,2-13C2)hexanesulfonateC13(2)-4:2 FTS	80.0			74.5%		70-130	"	"	"
M9PFNA	89.7			78.2%		70-130	"	"	"
M8PFOSA	90.5			78.8%		70-130	"	"	"
M8PFOS	93.2			84.9%		70-130	"	"	"
M8PFOA	94.9			82.7%		70-130	"	"	"
M7PFUnA	82.1			71.6%		70-130	"	"	"
M6PFDA	90.3			78.7%		70-130	"	"	"
M5PFPeA	109			95.1%		70-130	"	"	"
M5PFHxA	116			101%		70-130	"	"	"
M4PFHpA	104			91.0%		70-130	"	"	"
M3PFHxS	97.8			90.1%		70-130	"	"	"
M3PFBS	110			103%		70-130	"	"	"
M2PFTreA	1.13	Q		0.982%		70-130	"	"	"
		~							
MPFDoA	70.1	Q		61.1%		70-130	"	"	"

Chicago Regional Laboratory

536 South Clark Street, Chicago, IL 60605 Phone:(312)353-8370 Fax:(312)886-2591

Region 6, US EPA Project: R06 Deer Park PFAS

10625 Fallstone RoadProject Number: [none]Reported:Houston TX, 77099Project Manager: Matthew LoeselMay-02-19 16:52

Analysis by LC MS MS US EPA Region 5 Chicago Regional Laboratory

TC-BB-02-20190428-11 (1905002-09)		Matr	ix: Water	Sample	ed: Apr-28	-19 08:55	Received:	Apr-30-19 09	:00
Analyte	Result	Flags / Qualifiers	MDL	Reporting Limit	Units	Dilution	Batch	Prepared	Analyzed
perfluorobutanoate	U			43.3	ng/L	1	B19E001	May-01-19	May-02-19
perfluoropentanoate	U			43.3	"	"	"	"	"
perfluorohexanoate	37.5			8.67	"	"	"	"	"
perfluoroheptanoate	13.5			8.67	"	"	"	"	"
perfluorooctanoate	8.73			8.67	"	"	"	"	"
perfluorononanoate	U			8.67	"	"	"	"	"
perfluorodecanoate	U			8.67	"	"	"	"	"
perfluoroundecanoate	U			8.67	"	"	"	"	"
perfluorododecanoate	U			8.67	"	"	"	"	"
perfluorotridecanoate	U			8.67	"	"	"	"	"
perfluorotetradecanoate	U			8.67	"	"	"	"	"
perfluorobutyl sulfonate	13.1			8.67	"	"	"	"	"
perfluorohexyl sulfonate	15.5			8.67	"	"	"	"	"
perfluorooctyl sulfonate	41.8			8.67	"	ıı .	"	"	"
1H,1H,2H,2H-perfluorohexane	U			8.67	"	"	"	ıı .	"
sulfonate (4:2 FTS)	C			0.07					
perfluoro-1-pentanesulfonate	U			8.67	"	"	"	"	"
(PFPeS)									
1H,1H,2H,2H-perfluorooctane	292			8.67	"	"	"	"	"
sulfonate (6:2 FTS)	w.r			9.67	"	"	"	"	"
perfluoro-1-heptanesulfonate	U			8.67		"	"	"	"
(PFHpS) perfluoro-1-octanesulfonamide	U			8.67	"	"	"	"	"
(FOSA)	C			0.07					
1H,1H,2H,2H-perfluorodecane	U			8.67	"	"	"	"	"
sulfonate (8:2 FTS)									
perfluoro-1-nonanesulfonate (PFNS)	U			8.67	"	"	"	"	"
N-MeFOSAA	U			8.67	"	"	"	"	"
N-EtFOSAA	U			8.67	"	"	"	"	"
perfluoro-1-decanesulfonate (PFDS)	U			8.67	"	"	"	"	"
						%REC			
Surogate	Result			%REC		Limits	Batch	Prepared	Analyzed
D5-N-EtFOSAA	91.3			77.7%		70-130	"	"	"
D3-N-MeFOSAA	89.3			76.1%		70-130	"	"	"
perfluoro-	73.5	Q		64.7%		70-130	"	"	"
(1,2-13C2)decanesulfonateC13(2)-8:2 FTS									
perfluoro-	91.6			82.2%		70-130	"	"	"
(1,2-13C2)octanesulfonateC13(2)-6:2 FTS									

Chicago Regional Laboratory

536 South Clark Street, Chicago, IL 60605 Phone:(312)353-8370 Fax:(312)886-2591

Region 6, US EPA Project: R06 Deer Park PFAS

10625 Fallstone RoadProject Number: [none]Reported:Houston TX, 77099Project Manager: Matthew LoeselMay-02-19 16:52

Analysis by LC MS MS US EPA Region 5 Chicago Regional Laboratory

ITC-BB-02-20190428-11 (1905002-09)		Matr	ix: Water	Sample	ed: Apr-2	8-19 08:55	Received:	Apr-30-19 09	00:
Analyte	Result	Flags / Qualifiers	MDL	Reporting Limit	Units	Dilution	Batch	Prepared	Analyzed
Surogate	Result			%REC		%REC Limits	Batch	Prepared	Analyzed
M9PFNA	91.2			77.7%		70-130	B19E001	May-01-19	May-02-19
M8PFOSA	94.0			80.0%		70-130	"	"	"
M8PFOS	93.8			83.5%		70-130	"	"	"
M8PFOA	96.9			82.5%		70-130	"	"	"
M7PFUnA	86.9			74.0%		70-130	"	"	"
M6PFDA	89.2			75.9%		70-130	"	"	"
M5PFPeA	110			93.4%		70-130	"	"	"
M5PFHxA	117			99.2%		70-130	"	"	"
M4PFHpA	106			90.4%		70-130	"	"	"
M3PFHxS	98.3			88.5%		70-130	"	"	"
M3PFBS	112			103%		70-130	"	"	"
M2PFTreA	2.95	Q		2.52%		70-130	"	"	"
MPFDoA	75.9	Q		64.6%		70-130	"	"	"
MPFBA	122			104%		70-130	"	"	"

ITC-BB-02-20190429-11 (1905002-10)		Matr	ix: Water	Sample	ed: Apr-29-	-19 08:40	Received:	Apr-30-19 09	:00
Analyte	Result	Flags / Qualifiers	MDL	Reporting Limit	Units	Dilution	Batch	Prepared	Analyzed
perfluorobutanoate	U			43.1	ng/L	1	B19E001	May-01-19	May-02-19
perfluoropentanoate	U			43.1	"	"	"	"	"
perfluorohexanoate	36.0			8.62	"	"	"	"	"
perfluoroheptanoate	14.3			8.62	"	"	"	"	"
perfluorooctanoate	U			8.62	"	"	"	"	"
perfluorononanoate	U			8.62	"	"	"	"	"
perfluorodecanoate	U			8.62	"	"	"	"	"
perfluoroundecanoate	U			8.62	"	"	"	"	"
perfluorododecanoate	U			8.62	"	"	"	"	"
perfluorotridecanoate	U			8.62	"	"	"	"	"
perfluorotetradecanoate	U			8.62	"	"	"	"	"
perfluorobutyl sulfonate	11.5			8.62	"	"	"	"	"
perfluorohexyl sulfonate	14.2			8.62	"	"	"	"	"
perfluorooctyl sulfonate	44.1			8.62	"	"	"	"	"
1H,1H,2H,2H-perfluorohexane	U			8.62	"	"	"	n .	"
sulfonate (4:2 FTS)									

Chicago Regional Laboratory

536 South Clark Street, Chicago, IL 60605 Phone:(312)353-8370 Fax:(312)886-2591

Region 6, US EPA Project: R06 Deer Park PFAS

10625 Fallstone RoadProject Number: [none]Reported:Houston TX, 77099Project Manager: Matthew LoeselMay-02-19 16:52

Analysis by LC MS MS US EPA Region 5 Chicago Regional Laboratory

ITC-BB-02-20190429-11 (1905002-10)		Matr	ix: Water	Sample	ed: Apr-29	-19 08:40	Received: Apr-30-19 09:00		
Analyte	Result	Flags / Qualifiers	MDL	Reporting Limit	Units	Dilution	Batch	Prepared	Analyzed
perfluoro-1-pentanesulfonate	U			8.62	ng/L	1	B19E001	May-01-19	May-02-19
(PFPeS)									
1H,1H,2H,2H-perfluorooctane	525			8.62	"	"	"	"	"
sulfonate (6:2 FTS)	U			0.62	,,	"	"	"	"
perfluoro-1-heptanesulfonate (PFHpS)	U			8.62					
perfluoro-1-octanesulfonamide	U			8.62	"	"	"	"	"
(FOSA)									
1H,1H,2H,2H-perfluorodecane	U			8.62	"	"	"	"	"
sulfonate (8:2 FTS)									
perfluoro-1-nonanesulfonate (PFNS)	U			8.62	"	"	"	"	"
N-MeFOSAA	U			8.62	"	"	"	"	"
N-EtFOSAA	U			8.62	"	"	"	"	"
perfluoro-1-decanesulfonate (PFDS)	U			8.62	"	"	"	"	"
	D. L			%REC		%REC	D. (I	D 1	Analyzed
Surogate	Result					Limits	Batch	Prepared	Anaryzeu
D5-N-EtFOSAA	86.8			74.9%		70-130	"	"	
D3-N-MeFOSAA	86.6			74.7%		70-130			
perfluoro- (1,2-13C2)decanesulfonateC13(2)-8:2 FTS	71.1	Q		63.3%		70-130	"	"	"
perfluoro-	99.0			90.0%		70-130	"	"	"
(1,2-13C2)octanesulfonateC13(2)-6:2 FTS perfluoro(1,2-13C2)hexanesulfonateC13(2	80.6			74.4%		70-130	"	"	"
)-4:2 FTS	00.0			74.470		70-130			
M9PFNA	93.4			80.5%		70-130	"	"	"
M8PFOSA	90.3			77.9%		70-130	"	"	"
M8PFOS	94.3			84.9%		70-130	"	"	"
M8PFOA	95.4			82.3%		70-130	"	"	"
M7PFUnA	83.5			72.0%		70-130	"	"	"
M6PFDA	93.0			80.2%		70-130	"	"	"
M5PFPeA	111			95.6%		70-130	"	"	"
M5PFHxA	117			101%		70-130	"	"	"
M4PFHpA	106			91.2%		70-130	"	"	"
M3PFHxS	101			91.8%		70-130	"	"	"
M3PFBS	112			104%		70-130	"	"	"
M2PFTreA	0.937	Q		0.808%		70-130	"	"	"
MPFDoA	67.8	Q		58.5%		70-130	"	"	"
MPFBA	120			104%		70-130	"	"	"

Chicago Regional Laboratory

536 South Clark Street, Chicago, IL 60605 Phone:(312)353-8370 Fax:(312)886-2591

Region 6, US EPA Project: R06 Deer Park PFAS

10625 Fallstone RoadProject Number: [none]Reported:Houston TX, 77099Project Manager: Matthew LoeselMay-02-19 16:52

Analysis by LC MS MS US EPA Region 5 Chicago Regional Laboratory

ITC-BB-02-20190429-15 (1905002-11)		Matr	ix: Water	Sampled: Apr-29-19 11:15			Received: Apr-30-19 09:00		:00
Analyte	Result	Flags / Qualifiers	MDL	Reporting Limit	Units	Dilution	Batch	Prepared	Analyzed
perfluorobutanoate	U			46.6	ng/L	1	B19E001	May-01-19	May-02-19
perfluoropentanoate	U			46.6	"	"	"	"	"
perfluorohexanoate	U			9.32	"	"	"	"	"
perfluoroheptanoate	U			9.32	"	"	"	"	"
perfluorooctanoate	U			9.32	"	"	"	"	"
perfluorononanoate	U			9.32	"	"	"	"	"
perfluorodecanoate	U			9.32	"	"	"	"	"
perfluoroundecanoate	U			9.32	"	"	"	"	"
perfluorododecanoate	U			9.32	"	"	"	"	"
perfluorotridecanoate	U			9.32	"	"	"	"	"
perfluorotetradecanoate	U			9.32	"	"	"	"	"
perfluorobutyl sulfonate	U			9.32	"	"	"	"	"
perfluorohexyl sulfonate	U			9.32	"	"	"	"	"
perfluorooctyl sulfonate	U			9.32	"	"	"	"	"
1H,1H,2H,2H-perfluorohexane sulfonate (4:2 FTS)	U			9.32	"	"	"	"	"
perfluoro-1-pentanesulfonate (PFPeS)	U			9.32	"	"	"	**	"
1H,1H,2H,2H-perfluorooctane sulfonate (6:2 FTS)	119			9.32	"	"	"	"	"
perfluoro-1-heptanesulfonate (PFHpS)	U			9.32	"	"	"	"	"
perfluoro-1-octanesulfonamide (FOSA)	U			9.32	"	"	11	"	"
1H,1H,2H,2H-perfluorodecane sulfonate (8:2 FTS)	U			9.32	"	"	11	"	"
perfluoro-1-nonanesulfonate (PFNS)	U			9.32	"	"	"	"	"
N-MeFOSAA	U			9.32	"	"	"	"	"
N-EtFOSAA	U			9.32	"	"	"	"	"
perfluoro-1-decanesulfonate (PFDS)	U			9.32	"	"	"	"	"
Surogate	Result			%REC		%REC Limits	Batch	Prepared	Analyzed
D5-N-EtFOSAA	124			89.4%		70-130	"	"	"
D3-N-MeFOSAA	121			87.3%		70-130	"	"	"
perfluoro- (1,2-13C2)decanesulfonateC13(2)-8:2 FTS	108			80.6%		70-130	"	"	"
perfluoro- (1,2-13C2)octanesulfonateC13(2)-6:2 FTS	112			85.7%		70-130	II	"	"
perfluoro(1,2-13C2)hexanesulfonateC13(2)-4:2 FTS	106			82.2%		70-130	"	"	"

Chicago Regional Laboratory

536 South Clark Street, Chicago, IL 60605 Phone:(312)353-8370 Fax:(312)886-2591

Region 6, US EPA Project: R06 Deer Park PFAS

10625 Fallstone RoadProject Number: [none]Reported:Houston TX, 77099Project Manager: Matthew LoeselMay-02-19 16:52

Analysis by LC MS MS US EPA Region 5 Chicago Regional Laboratory

ITC-BB-02-20190429-15 (1905002-11)		Matr	ix: Water	Sample	ed: Apr-29	0-19 11:15	Received: Apr-30-19 09:00		
Analyte	Result	Flags / Qualifiers	MDL	Reporting Limit	Units	Dilution	Batch	Prepared	Analyzed
Surogate	Result			%REC		%REC Limits	Batch	Prepared	Analyzed
M9PFNA	118			85.1%		70-130	B19E001	May-01-19	May-02-19
M8PFOSA	119			86.2%		70-130	"	"	"
M8PFOS	121			91.3%		70-130	"	"	"
M8PFOA	115			83.1%		70-130	"	"	"
M7PFUnA	117			84.7%		70-130	"	"	"
M6PFDA	117			85.0%		70-130	"	"	"
M5PFPeA	132			95.4%		70-130	"	"	"
M5PFHxA	135			97.7%		70-130	"	"	"
M4PFHpA	125			90.4%		70-130	"	"	"
M3PFHxS	117			89.8%		70-130	"	"	"
M3PFBS	128			100%		70-130	"	"	"
M2PFTreA	92.8	Q		67.2%		70-130	"	"	"
MPFDoA	119			86.3%		70-130	"	"	"
MPFBA	131			95.0%		70-130	"	"	"

ITC-BB-03-20190426-11 (1905002-12)		Matr	ix: Water	Sample	ed: Apr-26-	19 09:10	Received:	Apr-30-19 09	:00
Analyte	Result	Flags / Qualifiers	MDL	Reporting Limit	Units	Dilution	Batch	Prepared	Analyzed
perfluorobutanoate	U			42.0	ng/L	1	B19E001	May-01-19	May-02-19
perfluoropentanoate	U			42.0	"	"	"	"	"
perfluorohexanoate	41.1			8.40	"	"	"	"	"
perfluoroheptanoate	16.1			8.40	"	"	"	"	"
perfluorooctanoate	9.27			8.40	"	"	"	"	"
perfluorononanoate	14.9			8.40	"	"	"	"	"
perfluorodecanoate	U			8.40	"	"	"	"	"
perfluoroundecanoate	U			8.40	"	"	"	"	"
perfluorododecanoate	U			8.40	"	"	II .	"	"
perfluorotridecanoate	U			8.40	"	"	"	"	"
perfluorotetradecanoate	U			8.40	"	"	"	"	"
perfluorobutyl sulfonate	13.9			8.40	"	"	"	"	"
perfluorohexyl sulfonate	17.1			8.40	"	"	"	"	"
perfluorooctyl sulfonate	59.1			8.40	"	"	"	"	"
1H,1H,2H,2H-perfluorohexane	U			8.40	"	"	"	"	"
sulfonate (4:2 FTS)									

Chicago Regional Laboratory

536 South Clark Street, Chicago, IL 60605 Phone:(312)353-8370 Fax:(312)886-2591

Region 6, US EPA Project: R06 Deer Park PFAS

10625 Fallstone RoadProject Number: [none]Reported:Houston TX, 77099Project Manager: Matthew LoeselMay-02-19 16:52

Analysis by LC MS MS US EPA Region 5 Chicago Regional Laboratory

ITC-BB-03-20190426-11 (1905002-12))	Matr	ix: Water	Sampled: Apr-26-19 09:10			Received: Apr-30-19 09:00		
Analyte	Result	Flags / Qualifiers	MDL	Reporting Limit	Units	Dilution	Batch	Prepared	Analyzed
perfluoro-1-pentanesulfonate	U			8.40	ng/L	1	B19E001	May-01-19	May-02-19
(PFPeS)									
1H,1H,2H,2H-perfluorooctane	492			8.40	"	"	"	"	"
sulfonate (6:2 FTS)	**			0.40	"	"	"	"	"
perfluoro-1-heptanesulfonate	U			8.40					
(PFHpS) perfluoro-1-octanesulfonamide	U			8.40	"	"	"	"	"
(FOSA)	C			00					
1H,1H,2H,2H-perfluorodecane	U			8.40	"	"	"	"	"
sulfonate (8:2 FTS)									
perfluoro-1-nonanesulfonate (PFNS)	U			8.40	"	"	"	"	"
N-MeFOSAA	U			8.40	"	"	"	"	"
N-EtFOSAA	U			8.40	"	"	"	"	"
perfluoro-1-decanesulfonate (PFDS)	U			8.40	"	"	"	"	"
						A/DEG			
Surogate	Result			%REC		%REC Limits	Batch	Prepared	Analyzed
D5-N-EtFOSAA	89.7			82.4%		70-130	"	"	"
D3-N-MeFOSAA	85.4			78.5%		70-130	"	"	"
perfluoro-	72.7	Q		69.0%		70-130	"	"	"
(1,2-13C2)decanesulfonateC13(2)-8:2 FTS									
perfluoro- (1,2-13C2)octanesulfonateC13(2)-6:2 FTS	100			97.0%		70-130	"	"	"
perfluoro(1,2-13C2)hexanesulfonateC13(2	77.7			76.4%		70-130	"	"	"
)-4:2 FTS									
M9PFNA	87.2			80.1%		70-130	"	"	"
M8PFOSA	87.4			80.2%		70-130	"	"	"
M8PFOS	89.6			86.0%		70-130	"	"	"
M8PFOA	91.0			83.6%		70-130	"	"	"
M7PFUnA	78.9			72.4%		70-130	"	"	"
M6PFDA	87.0			79.9%		70-130	"	"	"
M5PFPeA	102			94.1%		70-130	"	"	"
M5PFHxA	108			99.2%		70-130	"	"	"
M4PFHpA	101			92.6%		70-130	"	"	"
M3PFHxS	91.8			89.2%		70-130	"	"	"
M3PFBS	104			103%		70-130	"	"	"
M2PFTreA	0.104	Q		0.0959%		70-130	"	"	"
MPFDoA	63.1	Q		58.0%		70-130	"	"	"
MPFBA	117	*		108%		70-130	"	"	"

Chicago Regional Laboratory

536 South Clark Street, Chicago, IL 60605 Phone:(312)353-8370 Fax:(312)886-2591

Region 6, US EPA Project: R06 Deer Park PFAS

10625 Fallstone RoadProject Number: [none]Reported:Houston TX, 77099Project Manager: Matthew LoeselMay-02-19 16:52

Analysis by LC MS MS US EPA Region 5 Chicago Regional Laboratory

TC-BB-03-20190427-11 (1905002-13)		Matr	ix: Water	Sample	ed: Apr-27-	-19 09:40	Received: Apr-30-19 09:00		
Analyte	Result	Flags / Qualifiers	MDL	Reporting Limit	Units	Dilution	Batch	Prepared	Analyzed
perfluorobutanoate	U			41.0	ng/L	1	B19E001	May-01-19	May-02-19
perfluoropentanoate	U			41.0	"	"	"	"	"
perfluorohexanoate	40.8			8.19	"	"	"	"	"
perfluoroheptanoate	15.4			8.19	"	"	"	"	"
perfluorooctanoate	9.34			8.19	"	"	"	"	"
perfluorononanoate	U			8.19	"	"	"	"	"
perfluorodecanoate	U			8.19	"	"	"	ıı .	"
perfluoroundecanoate	U			8.19	"	"	"	ıı .	"
perfluorododecanoate	U			8.19	"	"	"	"	"
perfluorotridecanoate	U			8.19	"	"	"	ıı .	"
perfluorotetradecanoate	U			8.19	"	"	"	"	"
perfluorobetradecanoate	13.2			8.19	"	"	"	"	"
•	15.6			8.19	"	"	"	ıı .	,,
perfluorohexyl sulfonate				8.19	"	"	"	"	,,
perfluorooctyl sulfonate	48.0				"	"	"	"	,,
H,1H,2H,2H-perfluorohexane	U			8.19	"	"	"	"	"
ulfonate (4:2 FTS)	U			8.19	"	"	"	"	"
perfluoro-1-pentanesulfonate PFPeS)	U			0.19					
H,1H,2H,2H-perfluorooctane	576			8.19	"	"	"	"	"
sulfonate (6:2 FTS)									
perfluoro-1-heptanesulfonate	U			8.19	"	"	"	"	"
PFHpS)									
perfluoro-1-octanesulfonamide	U			8.19	"	"	"	"	"
FOSA)									
H,1H,2H,2H-perfluorodecane	U			8.19	"	"	"	"	"
sulfonate (8:2 FTS)	W.T			8.19	"	"	"	"	,,
perfluoro-1-nonanesulfonate (PFNS)	U				"	"	"	"	"
N-MeFOSAA	U			8.19					
N-EtFOSAA	U			8.19	"	"	"	"	"
perfluoro-1-decanesulfonate (PFDS)	U			8.19	"	"	"	"	"
						%REC			
Surogate	Result			%REC		Limits	Batch	Prepared	Analyzed
D5-N-EtFOSAA	76.0			74.4%		70-130	"	"	"
O3-N-MeFOSAA	78.1			76.4%		70-130	"	"	"
perfluoro-	65.8	Q		66.5%		70-130	"	"	"
(1,2-13C2)decanesulfonateC13(2)-8:2 FTS									
perfluoro-	94.2			97.2%		70-130	"	"	"
(1,2-13C2)octanesulfonateC13(2)-6:2 FTS perfluoro(1,2-13C2)hexanesulfonateC13(2	70.7			74.0%		70-130	"	"	"

Chicago Regional Laboratory

536 South Clark Street, Chicago, IL 60605 Phone:(312)353-8370 Fax:(312)886-2591

Region 6, US EPA Project: R06 Deer Park PFAS

10625 Fallstone RoadProject Number: [none]Reported:Houston TX, 77099Project Manager: Matthew LoeselMay-02-19 16:52

Analysis by LC MS MS US EPA Region 5 Chicago Regional Laboratory

ITC-BB-03-20190427-11 (1905002-13)		Matrix: Water		Sampled: Apr-27-19 09:40			Received: Apr-30-19 09:00		
Analyte	Result	Flags / Qualifiers	MDL	Reporting Limit	Units	Dilution	Batch	Prepared	Analyzed
Surogate	Result			%REC		%REC Limits	Batch	Prepared	Analyzed
M9PFNA	81.6			79.8%		70-130	B19E001	May-01-19	May-02-19
M8PFOSA	78.8			77.1%		70-130	"	"	"
M8PFOS	78.6			80.3%		70-130	"	"	"
M8PFOA	83.0			81.2%		70-130	"	"	"
M7PFUnA	69.8	Q		68.3%		70-130	"	"	"
M6PFDA	78.0			76.3%		70-130	"	"	"
M5PFPeA	96.6			94.5%		70-130	"	"	"
M5PFHxA	99.4			97.2%		70-130	"	"	"
M4PFHpA	94.6			92.6%		70-130	"	"	"
M3PFHxS	87.8			90.8%		70-130	"	"	"
M3PFBS	98.7			104%		70-130	"	"	"
M2PFTreA	0.00	Q		%		70-130	"	"	"
MPFDoA	51.7	Q		50.5%		70-130	"	"	"
MPFBA	108	-		106%		70-130	"	"	"

ITC-BB-03-20190427-12 (1905002-14)		Matr	ix: Water	Sample	ed: Apr-27	-19 09:40	Received: Apr-30-19 09:00		
Analyte	Result	Flags / Qualifiers	MDL	Reporting Limit	Units	Dilution	Batch	Prepared	Analyzed
perfluorobutanoate	U			45.8	ng/L	1	B19E001	May-01-19	May-02-19
perfluoropentanoate	U			45.8	"	"	"	"	"
perfluorohexanoate	38.6			9.16	"	"	"	"	"
perfluoroheptanoate	14.6			9.16	"	"	"	"	"
perfluorooctanoate	U			9.16	"	"	"	"	"
perfluorononanoate	U			9.16	"	"	"	"	"
perfluorodecanoate	U			9.16	"	"	"	"	"
perfluoroundecanoate	U			9.16	"	"	"	"	"
perfluorododecanoate	U			9.16	"	"	"	"	"
perfluorotridecanoate	U			9.16	"	"	"	"	"
perfluorotetradecanoate	U			9.16	"	"	"	"	"
perfluorobutyl sulfonate	13.6			9.16	"	"	"	"	"
perfluorohexyl sulfonate	16.6			9.16	"	"	"	"	"
perfluorooctyl sulfonate	51.7			9.16	"	"	"	"	"
1H,1H,2H,2H-perfluorohexane	U			9.16	"	"	"	n .	"
sulfonate (4:2 FTS)									

Chicago Regional Laboratory

536 South Clark Street, Chicago, IL 60605 Phone:(312)353-8370 Fax:(312)886-2591

Region 6, US EPA Project: R06 Deer Park PFAS

10625 Fallstone RoadProject Number: [none]Reported:Houston TX, 77099Project Manager: Matthew LoeselMay-02-19 16:52

Analysis by LC MS MS US EPA Region 5 Chicago Regional Laboratory

TTC-BB-03-20190427-12 (1905002-14)		Matr	ix: Water	Sample	Sampled: Apr-27-19 09:40			Received: Apr-30-19 09:00		
Analyte	Result	Flags / Qualifiers	MDL	Reporting Limit	Units	Dilution	Batch	Prepared	Analyzed	
perfluoro-1-pentanesulfonate	U			9.16	ng/L	1	B19E001	May-01-19	May-02-19	
(PFPeS)										
1H,1H,2H,2H-perfluorooctane	750			9.16	"	"	"	"	"	
sulfonate (6:2 FTS)	U			9.16	,,	"	"	"	,,	
perfluoro-1-heptanesulfonate (PFHpS)	U			9.16						
perfluoro-1-octanesulfonamide	U			9.16	"	"	"	"	"	
(FOSA)	C									
1H,1H,2H,2H-perfluorodecane	U			9.16	"	"	"	"	"	
sulfonate (8:2 FTS)										
perfluoro-1-nonanesulfonate (PFNS)	U			9.16	"	"	"	"	"	
N-MeFOSAA	U			9.16	"	"	"	"	"	
N-EtFOSAA	U			9.16	"	"	"	"	"	
perfluoro-1-decanesulfonate (PFDS)	U			9.16	"	"	"	"	"	
						%REC				
Surogate	Result			%REC		%REC Limits	Batch	Prepared	Analyzed	
D5-N-EtFOSAA	106			79.8%		70-130	"	"	"	
D3-N-MeFOSAA	106			79.5%		70-130	"	"	"	
perfluoro-	86.1	Q		66.8%		70-130	"	"	"	
(1,2-13C2)decanesulfonateC13(2)-8:2 FTS										
perfluoro- (1,2-13C2)octanesulfonateC13(2)-6:2 FTS	125			98.9%		70-130	"	"	"	
perfluoro(1,2-13C2)hexanesulfonateC13(2	92.4			74.1%		70-130	"	"	"	
)-4:2 FTS				, ,,,,,		, , , , , ,				
M9PFNA	105			78.9%		70-130	"	"	"	
M8PFOSA	108			80.9%		70-130	"	"	"	
M8PFOS	113			88.6%		70-130	"	"	"	
M8PFOA	109			81.7%		70-130	"	"	"	
M7PFUnA	102			76.8%		70-130	"	"	"	
M6PFDA	109			81.6%		70-130	"	"	"	
M5PFPeA	124			93.2%		70-130	"	"	"	
M5PFHxA	130			97.8%		70-130	"	"	"	
M4PFHpA	119			89.5%		70-130	"	"	"	
M3PFHxS	116			91.9%		70-130	"	"	"	
M3PFBS	130			105%		70-130	"	"	,,	
							"	"	"	
M2PFTreA	29.9	Q		22.4%		70-130				
MPFDoA	96.3			72.2%		70-130	"	"	"	
MPFBA	135			101%		70-130	"	"	"	

Chicago Regional Laboratory

536 South Clark Street, Chicago, IL 60605 Phone:(312)353-8370 Fax:(312)886-2591

Region 6, US EPA Project: R06 Deer Park PFAS

10625 Fallstone RoadProject Number: [none]Reported:Houston TX, 77099Project Manager: Matthew LoeselMay-02-19 16:52

Analysis by LC MS MS US EPA Region 5 Chicago Regional Laboratory

TC-BB-03-20190428-11 (1905002-15)		Matr	ix: Water	Sample	ed: Apr-28	-19 09:05	Received:	Apr-30-19 09	:00
Analyte	Result	Flags / Qualifiers	MDL	Reporting Limit	Units	Dilution	Batch	Prepared	Analyzed
perfluorobutanoate	U			44.6	ng/L	1	B19E001	May-01-19	May-02-19
perfluoropentanoate	U			44.6	"	"	"	"	"
perfluorohexanoate	39.9			8.93	"	"	"	"	"
perfluoroheptanoate	16.0			8.93	"	"	"	"	"
perfluorooctanoate	10.4			8.93	"	"	"	"	"
perfluorononanoate	U			8.93	"	"	"	"	"
perfluorodecanoate	U			8.93	"	"	"	"	"
perfluoroundecanoate	U			8.93	"	"	"	"	"
perfluorododecanoate	U			8.93	"	"	"	"	"
perfluorotridecanoate	U			8.93	"	"	"	"	"
perfluorotetradecanoate	U			8.93	"	"	"	"	"
perfluorobutyl sulfonate	13.3			8.93	"	"	"	"	"
perfluorohexyl sulfonate	14.5			8.93	"	"	"	"	"
perfluorooctyl sulfonate	51.6			8.93	"	n .	"	"	"
1H,1H,2H,2H-perfluorohexane	U			8.93	"	"	ıı .	ıı .	"
sulfonate (4:2 FTS)				0.75					
perfluoro-1-pentanesulfonate	U			8.93	"	"	"	"	"
(PFPeS)									
1H,1H,2H,2H-perfluorooctane	571			8.93	"	"	"	"	"
sulfonate (6:2 FTS)	T.Y.			0.02	"	"	,,	"	"
perfluoro-1-heptanesulfonate	U			8.93					
(PFHpS) perfluoro-1-octanesulfonamide	U			8.93	"	"	"	"	"
(FOSA)				0.75					
1H,1H,2H,2H-perfluorodecane	U			8.93	"	"	"	"	"
sulfonate (8:2 FTS)									
perfluoro-1-nonanesulfonate (PFNS)	U			8.93	"	"	"	"	"
N-MeFOSAA	U			8.93	"	"	"	"	"
N-EtFOSAA	U			8.93	"	"	"	"	"
perfluoro-1-decanesulfonate (PFDS)	U			8.93	"	"	"	"	"
						%REC			
Surogate	Result			%REC		Limits	Batch	Prepared	Analyzed
D5-N-EtFOSAA	100			79.9%		70-130	"	"	"
D3-N-MeFOSAA	94.9			75.5%		70-130	"	"	"
perfluoro-	80.5	Q		66.1%		70-130	"	"	"
(1,2-13C2)decanesulfonateC13(2)-8:2 FTS	100			00.40/		70.120	"	"	,,
perfluoro- (1,2-13C2)octanesulfonateC13(2)-6:2 FTS	108			90.4%		70-130	"	"	"
perfluoro(1,2-13C2)hexanesulfonateC13(2)	86.8			73.9%		70-130	"	"	"

Chicago Regional Laboratory

536 South Clark Street, Chicago, IL 60605 Phone:(312)353-8370 Fax:(312)886-2591

Region 6, US EPA Project: R06 Deer Park PFAS

10625 Fallstone RoadProject Number: [none]Reported:Houston TX, 77099Project Manager: Matthew LoeselMay-02-19 16:52

Analysis by LC MS MS US EPA Region 5 Chicago Regional Laboratory

ITC-BB-03-20190428-11 (1905002-15)		Matrix: Water		Sampled: Apr-28-19 09:05			Received: Apr-30-19 09:00		
Analyte	Result	Flags / Qualifiers	MDL	Reporting Limit	Units	Dilution	Batch	Prepared	Analyzed
Surogate	Result			%REC		%REC Limits	Batch	Prepared	Analyzed
M9PFNA	99.4			79.1%		70-130	B19E001	May-01-19	May-02-19
M8PFOSA	101			79.9%		70-130	"	"	"
M8PFOS	102			84.4%		70-130	"	"	"
M8PFOA	102			81.4%		70-130	"	"	"
M7PFUnA	93.8			74.6%		70-130	"	"	"
M6PFDA	99.6			79.2%		70-130	"	"	"
M5PFPeA	119			94.5%		70-130	"	"	"
M5PFHxA	120			95.7%		70-130	"	"	"
M4PFHpA	118			94.2%		70-130	"	"	"
M3PFHxS	108			90.6%		70-130	"	"	"
M3PFBS	120			103%		70-130	"	"	"
M2PFTreA	8.09	Q		6.43%		70-130	"	"	"
MPFDoA	82.8	Q		65.9%		70-130	"	"	"
MPFBA	127			101%		70-130	"	"	"

ITC-BB-03-20190428-15 (1905002-16)		Matrix: Water		Sampled: Apr-28-19 11:00			Received: Apr-30-19 09:00		
Analyte	Result	Flags / Qualifiers	MDL	Reporting Limit	Units	Dilution	Batch	Prepared	Analyzed
perfluorobutanoate	U			46.5	ng/L	1	B19E001	May-01-19	May-02-19
perfluoropentanoate	U			46.5	"	"	"	"	"
perfluorohexanoate	U			9.30	"	"	"	"	"
perfluoroheptanoate	U			9.30	"	"	"	"	"
perfluorooctanoate	U			9.30	"	"	"	"	"
perfluorononanoate	U			9.30	"	"	"	"	"
perfluorodecanoate	U			9.30	"	"	"	"	"
perfluoroundecanoate	U			9.30	"	"	"	"	"
perfluorododecanoate	U			9.30	"	"	"	"	"
perfluorotridecanoate	U			9.30	"	"	"	"	"
perfluorotetradecanoate	U			9.30	"	"	"	"	"
perfluorobutyl sulfonate	U			9.30	"	"	"	"	"
perfluorohexyl sulfonate	U			9.30	"	"	"	"	"
perfluorooctyl sulfonate	U			9.30	"	"	"	"	"
1H,1H,2H,2H-perfluorohexane sulfonate (4:2 FTS)	U			9.30	"	"	"	"	"

Chicago Regional Laboratory

536 South Clark Street, Chicago, IL 60605 Phone:(312)353-8370 Fax:(312)886-2591

Region 6, US EPA Project: R06 Deer Park PFAS

10625 Fallstone RoadProject Number: [none]Reported:Houston TX, 77099Project Manager: Matthew LoeselMay-02-19 16:52

Analysis by LC MS MS US EPA Region 5 Chicago Regional Laboratory

ITC-BB-03-20190428-15 (1905002-16))	Matr	ix: Water	Sample	ed: Apr-28	3-19 11:00	Received:	Apr-30-19 09	:00
Analyte	Result	Flags / Qualifiers	MDL	Reporting Limit	Units	Dilution	Batch	Prepared	Analyzed
perfluoro-1-pentanesulfonate	U			9.30	ng/L	1	B19E001	May-01-19	May-02-19
(PFPeS)									
1H,1H,2H,2H-perfluorooctane	387			9.30	"	"	"	"	"
sulfonate (6:2 FTS)	**			0.20	"	"	"	"	"
perfluoro-1-heptanesulfonate	U			9.30	"		"		"
(PFHpS) perfluoro-1-octanesulfonamide	U			9.30	"	"	"	"	"
(FOSA)	C			,,,,,					
1H,1H,2H,2H-perfluorodecane	U			9.30	"	"	"	"	"
sulfonate (8:2 FTS)									
perfluoro-1-nonanesulfonate (PFNS)	U			9.30	"	"	"	"	"
N-MeFOSAA	U			9.30	"	"	"	"	"
N-EtFOSAA	U			9.30	"	"	"	"	"
perfluoro-1-decanesulfonate (PFDS)	U			9.30	"	"	"	"	"
						%REC			
Surogate	Result			%REC		Limits	Batch	Prepared	Analyzed
D5-N-EtFOSAA	127			92.4%		70-130	"	"	"
D3-N-MeFOSAA	125			90.8%		70-130	"	"	"
perfluoro-	105			79.2%		70-130	"	"	"
(1,2-13C2)decanesulfonateC13(2)-8:2 FTS									
perfluoro- (1,2-13C2)octanesulfonateC13(2)-6:2 FTS	126			96.3%		70-130	"	"	"
perfluoro(1,2-13C2)hexanesulfonateC13(2	108			83.9%		70-130	"	"	"
)-4:2 FTS									
M9PFNA	120			87.4%		70-130	"	"	"
M8PFOSA	123			89.2%		70-130	"	"	"
M8PFOS	124			94.2%		70-130	"	"	"
M8PFOA	119			86.3%		70-130	"	"	"
M7PFUnA	117			85.2%		70-130	"	"	"
M6PFDA	120			87.5%		70-130	"	"	"
M5PFPeA	130			94.8%		70-130	"	"	"
M5PFHxA	137			99.6%		70-130	"	"	"
M4PFHpA	124			90.3%		70-130	"	"	"
M3PFHxS	121			93.1%		70-130	"	"	"
M3PFBS	127			99.1%		70-130	"	"	"
M2FFTreA	82.9			60.2%		70-130	"	"	"
		Q					"	"	
MPFDoA	120			87.5%		70-130	"	"	"
MPFBA	134			97.3%		70-130	"	"	"

Chicago Regional Laboratory

536 South Clark Street, Chicago, IL 60605 Phone:(312)353-8370 Fax:(312)886-2591

Region 6, US EPA Project: R06 Deer Park PFAS

10625 Fallstone RoadProject Number: [none]Reported:Houston TX, 77099Project Manager: Matthew LoeselMay-02-19 16:52

Analysis by LC MS MS US EPA Region 5 Chicago Regional Laboratory

ITC-BB-03-20190429-11 (1905002-17)		Matr	ix: Water	Sample	ed: Apr-29	-19 08:50	Received: Apr-30-19 09:00			
Analyte	Result	Flags / Qualifiers	MDL	Reporting Limit	Units	Dilution	Batch	Prepared	Analyzed	
perfluorobutanoate	U			43.2	ng/L	1	B19E001	May-01-19	May-02-19	
perfluoropentanoate	U			43.2	"	"	"	"	"	
perfluorohexanoate	34.9			8.65	"	"	"	"	"	
- perfluoroheptanoate	14.3			8.65	"	"	"	"	"	
perfluorooctanoate	U			8.65	"	"	"	"	"	
perfluorononanoate	U			8.65	"	"	"	"	"	
perfluorodecanoate	U			8.65	"	"	"	"	"	
perfluoroundecanoate	U			8.65	"	"	"	"	"	
perfluorododecanoate	U			8.65	"	"	"	"	"	
perfluorotridecanoate	U			8.65	"	"	"	"	"	
perfluorotetradecanoate	U			8.65	"	"	"	"	"	
perfluorobutyl sulfonate	9.77			8.65	"	"	"	"	"	
perfluorobacyl sulfonate	14.2			8.65	"	"	"	"	"	
perfluorooctyl sulfonate	49.3			8.65	"	"	"	"	"	
1H,1H,2H,2H-perfluorohexane	U			8.65	"	"	"	"	"	
sulfonate (4:2 FTS)	· ·			8.03						
perfluoro-1-pentanesulfonate	U			8.65	"	"	"	"	"	
(PFPeS)										
1H,1H,2H,2H-perfluorooctane	463			8.65	"	"	"	"	"	
sulfonate (6:2 FTS)										
perfluoro-1-heptanesulfonate	U			8.65	"	"	"	"	"	
(PFHpS)	U			8.65	"	"	"	"	"	
perfluoro-1-octanesulfonamide (FOSA)	U			6.03						
1H,1H,2H,2H-perfluorodecane	U			8.65	"	"	"	"	"	
sulfonate (8:2 FTS)										
perfluoro-1-nonanesulfonate (PFNS)	U			8.65	"	"	"	"	"	
N-MeFOSAA	U			8.65	"	"	"	"	"	
N-EtFOSAA	U			8.65	"	"	"	"	"	
perfluoro-1-decanesulfonate (PFDS)	U			8.65	"	"	"	"	"	
						0/DEC				
Surogate	Result			%REC		%REC Limits	Batch	Prepared	Analyzed	
D5-N-EtFOSAA	81.1	Q		69.4%		70-130	"	"	"	
D3-N-MeFOSAA	85.0			72.9%		70-130	"	"	"	
perfluoro-	68.0	Q		60.2%		70-130	"	"	"	
(1,2-13C2)decanesulfonateC13(2)-8:2 FTS		~								
perfluoro-	95.4			86.1%		70-130	"	"	"	
(1,2-13C2)octanesulfonateC13(2)-6:2 FTS perfluoro(1,2-13C2)hexanesulfonateC13(2	71.6	Q		65.6%		70-130	"	"	"	
)-4:2 FTS	, 1.0	Ų		55.070		,0150				

Chicago Regional Laboratory

536 South Clark Street, Chicago, IL 60605 Phone:(312)353-8370 Fax:(312)886-2591

Region 6, US EPA Project: R06 Deer Park PFAS

10625 Fallstone RoadProject Number: [none]Reported:Houston TX, 77099Project Manager: Matthew LoeselMay-02-19 16:52

Analysis by LC MS MS US EPA Region 5 Chicago Regional Laboratory

ITC-BB-03-20190429-11 (1905002-17)		Matrix: Water			ed: Apr-29	9-19 08:50	Received: Apr-30-19 09:00		
Analyte	Result	Flags / Qualifiers	MDL	Reporting Limit	Units	Dilution	Batch	Prepared	Analyzed
Surogate	Result			%REC		%REC Limits	Batch	Prepared	Analyzed
M9PFNA	90.4			77.5%		70-130	B19E001	May-01-19	May-02-19
M8PFOSA	92.2			79.0%		70-130	"	"	"
M8PFOS	94.1			84.2%		70-130	"	"	"
M8PFOA	90.0			77.1%		70-130	"	"	"
M7PFUnA	80.0	Q		68.5%		70-130	"	"	"
M6PFDA	86.5			74.1%		70-130	"	"	"
M5PFPeA	98.4			84.3%		70-130	"	"	"
M5PFHxA	109			93.4%		70-130	"	"	"
M4PFHpA	97.2			83.3%		70-130	"	"	"
M3PFHxS	97.0			87.8%		70-130	"	"	"
M3PFBS	104			96.2%		70-130	"	"	"
M2PFTreA	1.33	Q		1.14%		70-130	"	"	"
MPFDoA	67.5	Q		57.8%		70-130	"	"	"
MPFBA	117			100%		70-130	"	"	"

ITC-BB-05-20190426-11 (1905002-18)		Matrix: Water		Sample	ed: Apr-26-	-19 09:25	Received: Apr-30-19 09:00		
Analyte	Result	Flags / Qualifiers	MDL	Reporting Limit	Units	Dilution	Batch	Prepared	Analyzed
perfluorobutanoate	U			40.7	ng/L	1	B19E001	May-01-19	May-02-19
perfluoropentanoate	U			40.7	"	"	"	"	"
perfluorohexanoate	36.8			8.14	"	"	"	"	"
perfluoroheptanoate	14.9			8.14	"	"	"	"	"
perfluorooctanoate	9.11			8.14	"	"	"	"	"
perfluorononanoate	U			8.14	"	"	"	"	"
perfluorodecanoate	U			8.14	"	"	"	"	"
perfluoroundecanoate	U			8.14	"	"	"	"	"
perfluorododecanoate	U			8.14	"	"	"	"	"
perfluorotridecanoate	U			8.14	"	"	"	"	"
perfluorotetradecanoate	U			8.14	"	"	"	"	"
perfluorobutyl sulfonate	13.6			8.14	"	"	"	"	"
perfluorohexyl sulfonate	15.6			8.14	"	"	"	"	"
perfluorooctyl sulfonate	51.4			8.14	"	"	"	"	"
1H,1H,2H,2H-perfluorohexane sulfonate (4:2 FTS)	U			8.14	"	"	"	II.	"

Chicago Regional Laboratory

536 South Clark Street, Chicago, IL 60605 Phone:(312)353-8370 Fax:(312)886-2591

Region 6, US EPA Project: R06 Deer Park PFAS

10625 Fallstone RoadProject Number: [none]Reported:Houston TX, 77099Project Manager: Matthew LoeselMay-02-19 16:52

Analysis by LC MS MS US EPA Region 5 Chicago Regional Laboratory

ITC-BB-05-20190426-11 (1905002-18)		Matr	ix: Water	Sample	ed: Apr-26	-19 09:25	Received: Apr-30-19 09:00		
Analyte	Result	Flags / Qualifiers	MDL	Reporting Limit	Units	Dilution	Batch	Prepared	Analyzed
perfluoro-1-pentanesulfonate	U			8.14	ng/L	1	B19E001	May-01-19	May-02-19
(PFPeS)									
1H,1H,2H,2H-perfluorooctane	469			8.14	"	"	"	"	"
sulfonate (6:2 FTS)	U			0.14	,,	,,	"	"	"
perfluoro-1-heptanesulfonate (PFHpS)	U			8.14					
perfluoro-1-octanesulfonamide	U			8.14	"	"	"	"	"
(FOSA)									
1H,1H,2H,2H-perfluorodecane	U			8.14	"	"	"	"	"
sulfonate (8:2 FTS)									
perfluoro-1-nonanesulfonate (PFNS)	U			8.14	"	"	"	"	"
N-MeFOSAA	U			8.14	"	"	"	"	"
N-EtFOSAA	U			8.14	"	"	"	"	"
perfluoro-1-decanesulfonate (PFDS)	U			8.14	"	"	"	"	"
Surogate	Result			%REC		%REC	Batch	Prepared	Analyzed
D5-N-EtFOSAA	68.0			67.6%		70-130	"	"	" "
D3-N-MeFOSAA	68.8	Q		68.4%		70-130	"	"	"
perfluoro-	59.2	Q		60.8%		70-130	"	"	"
perfutoro- (1,2-13C2)decanesulfonateC13(2)-8:2 FTS	39.2	Q		00.0%		/0-130			
perfluoro-	84.1			88.1%		70-130	"	"	"
(1,2-13C2)octanesulfonateC13(2)-6:2 FTS	(5.0			60.00/		70.120	"	"	,,
perfluoro(1,2-13C2)hexanesulfonateC13(2)-4:2 FTS	65.8	Q		69.9%		70-130			
M9PFNA	75.0			74.6%		70-130	"	"	"
M8PFOSA	76.7			76.2%		70-130	"	"	"
M8PFOS	75.8			78.8%		70-130	"	"	"
M8PFOA	78.9			78.4%		70-130	"	"	"
M7PFUnA	63.5	Q		63.2%		70-130	"	"	"
M6PFDA	72.4	٧		72.0%		70-130	"	"	"
M5PFPeA	91.1			90.6%		70-130	"	"	"
M5PFHxA	96.3			95.7%		70-130	"	"	"
M4PFHpA	87.0			86.5%		70-130	"	"	"
M3PFHxS	81.1			85.3%		70-130	"	"	"
M3PFBS							"	"	
	91.7			98.1%		70-130	"	"	
M2PFTreA	0.00	Q		%		70-130			
MPFDoA	42.0	Q		41.7%		70-130	"	"	"
MPFBA	106			105%		70-130	"	"	"

Chicago Regional Laboratory

536 South Clark Street, Chicago, IL 60605 Phone:(312)353-8370 Fax:(312)886-2591

Region 6, US EPA Project: R06 Deer Park PFAS

10625 Fallstone RoadProject Number: [none]Reported:Houston TX, 77099Project Manager: Matthew LoeselMay-02-19 16:52

Analysis by LC MS MS US EPA Region 5 Chicago Regional Laboratory

ITC-BB-05-20190427-11 (1905002-19)		Matr	ix: Water	Sample	ed: Apr-27	-19 09:55	Received: Apr-30-19 09:00			
Analyte	Result	Flags / Qualifiers	MDL	Reporting Limit	Units	Dilution	Batch	Prepared	Analyzed	
perfluorobutanoate	U			60.3	ng/L	1	B19E001	May-01-19	May-02-19	
perfluoropentanoate	U			60.3	"	"	"	"	"	
perfluorohexanoate	36.7			12.1	"	"	"	"	"	
perfluoroheptanoate	17.0			12.1	"	"	"	"	"	
perfluorooctanoate	14.7			12.1	"	"	"	"	"	
perfluorononanoate	478			12.1	"	"	"	"	"	
perfluorodecanoate	U			12.1	"	"	"	"	"	
perfluoroundecanoate	20.6			12.1	"	"	"	"	"	
perfluorododecanoate	U			12.1	"	"	"	"	"	
perfluorotridecanoate	U			12.1	"	"	"	"	"	
perfluorotetradecanoate	U			12.1	"	"	"	"	"	
perfluoroteti adecanoate	U			12.1	"	"	"	"	"	
perfluorobutyi sulfonate	15.0			12.1	"	"	"	"	"	
•	67.0			12.1	"	"	"	"	"	
perfluorooctyl sulfonate					"	"	"	,,	"	
H,1H,2H,2H-perfluorohexane sulfonate (4:2 FTS)	U			12.1						
perfluoro-1-pentanesulfonate	U			12.1	"	"	"	"	"	
(PFPeS)										
H,1H,2H,2H-perfluorooctane	459			12.1	"	"	"	"	"	
sulfonate (6:2 FTS)										
perfluoro-1-heptanesulfonate	U			12.1	"	"	"	"	"	
(PFHpS)	**			12.1	"	"	"	"	,,	
perfluoro-1-octanesulfonamide	U			12.1	"	"	"	"	"	
(FOSA) 1H,1H,2H,2H-perfluorodecane	U			12.1	"	"	"	"	"	
sulfonate (8:2 FTS)	C			12.1						
perfluoro-1-nonanesulfonate (PFNS)	U			12.1	"	"	"	"	"	
N-MeFOSAA	U			12.1	"	"	"	"	"	
N-EtFOSAA	U			12.1	"	"	"	"	"	
perfluoro-1-decanesulfonate (PFDS)	U			12.1	"	"	"	"	"	
·										
Surogate	Result			%REC		%REC Limits	Batch	Prepared	Analyzed	
D5-N-EtFOSAA	189			83.5%		70-130	"	"	"	
D3-N-MeFOSAA	187			82.8%		70-130	"	"	"	
perfluoro-	162			74.2%		70-130	"	"	"	
(1,2-13C2)decanesulfonateC13(2)-8:2 FTS										
perfluoro-	179			83.7%		70-130	"	"	"	
(1,2-13C2)octanesulfonateC13(2)-6:2 FTS perfluoro(1,2-13C2)hexanesulfonateC13(2	159			75.5%		70-130	"	"	"	
)-4:2 FTS	139			13.370		, 0-130				

Chicago Regional Laboratory

536 South Clark Street, Chicago, IL 60605 Phone:(312)353-8370 Fax:(312)886-2591

Region 6, US EPA Project: R06 Deer Park PFAS

10625 Fallstone RoadProject Number: [none]Reported:Houston TX, 77099Project Manager: Matthew LoeselMay-02-19 16:52

Analysis by LC MS MS US EPA Region 5 Chicago Regional Laboratory

TTC-BB-05-20190427-11 (1905002-19)		Matr	ix: Water	Sample	ed: Apr-2	7-19 09:55	Received:	Apr-30-19 09	:00
Analyte	Result	Flags / Qualifiers	MDL	Reporting Limit	Units	Dilution	Batch	Prepared	Analyzed
Surogate	Result			%REC		%REC Limits	Batch	Prepared	Analyzed
M9PFNA	179			79.3%		70-130	B19E001	May-01-19	May-02-19
M8PFOSA	191			84.8%		70-130	"	"	"
M8PFOS	192			89.0%		70-130	"	"	"
M8PFOA	182			80.7%		70-130	"	"	"
M7PFUnA	189			83.9%		70-130	"	"	"
M6PFDA	185			81.8%		70-130	"	"	"
M5PFPeA	116	Q		51.6%		70-130	"	"	"
M5PFHxA	147	Q		64.9%		70-130	"	"	"
M4PFHpA	206			91.3%		70-130	"	"	"
M3PFHxS	188			87.9%		70-130	"	"	"
M3PFBS	106	Q		50.5%		70-130	"	"	"
M2PFTreA	194			86.1%		70-130	"	"	"
MPFDoA	197			87.1%		70-130	"	"	"
MPFBA	162			71.8%		70-130	"	"	"

ITC-BB-05-20190428-11 (1905002-20)		Matr	Matrix: Water		Sampled: Apr-28-19 09:20			Received: Apr-30-19 09:00		
Analyte	Result	Flags / Qualifiers	MDL	Reporting Limit	Units	Dilution	Batch	Prepared	Analyzed	
perfluorobutanoate	U			43.0	ng/L	1	B19E001	May-01-19	May-02-19	
perfluoropentanoate	U			43.0	"	"	"	"	"	
perfluorohexanoate	33.0			8.60	"	"	"	"	"	
perfluoroheptanoate	13.0			8.60	"	"	"	"	"	
perfluorooctanoate	U			8.60	"	"	"	"	"	
perfluorononanoate	U			8.60	"	"	"	"	"	
perfluorodecanoate	U			8.60	"	"	"	"	"	
perfluoroundecanoate	U			8.60	"	"	"	"	"	
perfluorododecanoate	U			8.60	"	"	"	"	"	
perfluorotridecanoate	U			8.60	"	"	"	"	"	
perfluorotetradecanoate	U			8.60	"	"	"	"	"	
perfluorobutyl sulfonate	9.88			8.60	"	"	"	"	"	
perfluorohexyl sulfonate	12.7			8.60	"	"	"	"	"	
perfluorooctyl sulfonate	42.5			8.60	"	"	"	"	"	
1H,1H,2H,2H-perfluorohexane sulfonate (4:2 FTS)	U			8.60	"	"	"	"	"	

Chicago Regional Laboratory

536 South Clark Street, Chicago, IL 60605 Phone:(312)353-8370 Fax:(312)886-2591

Region 6, US EPA Project: R06 Deer Park PFAS

10625 Fallstone RoadProject Number: [none]Reported:Houston TX, 77099Project Manager: Matthew LoeselMay-02-19 16:52

Analysis by LC MS MS US EPA Region 5 Chicago Regional Laboratory

TC-BB-05-20190428-11 (1905002-20)		Matr	ix: Water	Sampled: Apr-28-19 09:20			Received: Apr-30-19 09:00		
Analyte	Result	Flags / Qualifiers	MDL	Reporting Limit	Units	Dilution	Batch	Prepared	Analyzed
perfluoro-1-pentanesulfonate	U			8.60	ng/L	1	B19E001	May-01-19	May-02-19
(PFPeS)									
1H,1H,2H,2H-perfluorooctane	838			8.60	"	"	"	"	"
sulfonate (6:2 FTS)	W.Y.			0.60	"	"	"	"	"
perfluoro-1-heptanesulfonate	U			8.60					
(PFHpS) perfluoro-1-octanesulfonamide	U			8.60	"	"	"	"	"
FOSA)	C			0.00					
1H,1H,2H,2H-perfluorodecane	U			8.60	"	"	"	"	"
sulfonate (8:2 FTS)									
perfluoro-1-nonanesulfonate (PFNS)	U			8.60	"	"	"	"	"
N-MeFOSAA	U			8.60	"	"	"	"	"
N-EtFOSAA	U			8.60	"	"	"	"	"
perfluoro-1-decanesulfonate (PFDS)	U			8.60	"	"	"	"	"
Surogate	Result			%REC		%REC	Batch	Prepared	Analyzed
D5-N-EtFOSAA	84.2			73.2%		Limits 70-130	"	"	"
D3-N-MeFOSAA	82.2			71.4%		70-130	"	"	"
perfluoro-	69.5	Q		62.3%		70-130	"	"	"
(1,2-13C2)decanesulfonateC13(2)-8:2 FTS	07.0	Q		02.570		, 0 150			
perfluoro-	115			105%		70-130	"	"	"
(1,2-13C2)octanesulfonateC13(2)-6:2 FTS	74.4			69.1%		70-130	"	"	"
perfluoro(1,2-13C2)hexanesulfonateC13(2 -4:2 FTS	/4.4	Q		09.1%		/0-130			
M9PFNA	88.9			77.2%		70-130	"	"	"
M8PFOSA	83.0			72.1%		70-130	"	"	"
M8PFOS	82.3			74.7%		70-130	"	"	"
M8PFOA	88.0			76.4%		70-130	"	"	"
M7PFUnA	78.2	Q		67.9%		70-130	"	"	"
M6PFDA	87.8	<u>V</u>		76.2%		70-130	"	"	"
M5PFPeA	95.1			82.6%		70-130	"	"	"
M5PFHxA	106			91.9%		70-130	"	"	"
							<u>"</u>	"	"
M4PFHpA	94.8			82.3%		70-130			
M3PFHxS	91.5			84.0%		70-130	"	"	"
M3PFBS	100			93.5%		70-130	"	"	"
M2PFTreA	1.25	Q		1.09%		70-130	"	"	"
MPFDoA	66.2	Q		57.5%		70-130	"	"	"
MPFBA	111			96.6%		70-130	"	"	"

Chicago Regional Laboratory

536 South Clark Street, Chicago, IL 60605 Phone:(312)353-8370 Fax:(312)886-2591

Region 6, US EPA Project: R06 Deer Park PFAS

10625 Fallstone RoadProject Number: [none]Reported:Houston TX, 77099Project Manager: Matthew LoeselMay-02-19 16:52

Analysis by LC MS MS - Quality Control US EPA Region 5 Chicago Regional Laboratory

Batch B19E001 - *** DEFAULT PREP ***

Blank (B19E001-BLK1)				Prepared	& Analy	zed: May-()1-19				
		Flags /		Reporting		Spike	Source		%REC		RPD
Analyte	Result	Qualifiers	MDL	Limit	Units	Level	Result	%REC	Limits	RPD	Limit
perfluorobutanoate	U			50.0	ng/L						
perfluoropentanoate	U			50.0	"						
perfluorohexanoate	U			10.0	"						
perfluoroheptanoate	U			10.0	"						
perfluorooctanoate	U			10.0	"						
perfluorononanoate	U			10.0	"						
perfluorodecanoate	U			10.0	"						
perfluoroundecanoate	U			10.0	"						
perfluorododecanoate	U			10.0	"						
perfluorotridecanoate	U			10.0	"						
	U			10.0	"						
perfluorotetradecanoate					"						
perfluorobutyl sulfonate	U			10.0	"						
perfluorohexyl sulfonate	U			10.0							
perfluorooctyl sulfonate	U			10.0	"						
1H,1H,2H,2H-perfluorohexane	U			10.0	"						
sulfonate (4:2 FTS)	U			10.0	,,						
perfluoro-1-pentanesulfonate (PFPeS)	U			10.0							
1H,1H,2H,2H-perfluorooctane	U			10.0	"						
sulfonate (6:2 FTS)											
perfluoro-1-heptanesulfonate	U			10.0	"						
(PFHpS)	U			10.0	,,						
perfluoro-1-octanesulfonamide (FOSA)	U			10.0							
1H,1H,2H,2H-perfluorodecane	U			10.0	"						
sulfonate (8:2 FTS)											
perfluoro-1-nonanesulfonate (PFNS)	U			10.0	"						
N-MeFOSAA	U			10.0	"						
N-EtFOSAA	U			10.0	"						
perfluoro-1-decanesulfonate (PFDS)	U			10.0	"						
Surrogate: D5-N-EtFOSAA	142				"	160.0		88.6%	70-130		
Surrogate: D3-N-MeFOSAA	136				"	160.0		85.1%	70-130		
Surrogate: perfluoro-	123				"	154.9		79.6%	70-130		
(1,2-13C2)decanesulfonateC13(2)-8:2 FTS Surrogate: perfluoro-	123				"	151.8		80.9%	70-130		
(1,2-13C2)octanesulfonateC13(2)-6:2 FTS											

Chicago Regional Laboratory

536 South Clark Street, Chicago, IL 60605 Phone:(312)353-8370 Fax:(312)886-2591

Region 6, US EPA Project: R06 Deer Park PFAS

10625 Fallstone RoadProject Number: [none]Reported:Houston TX, 77099Project Manager: Matthew LoeselMay-02-19 16:52

Analysis by LC MS MS - Quality Control US EPA Region 5 Chicago Regional Laboratory

Batch B19E001 - *** DEFAULT PREP ***

Blank (B19E001-BLK1)				Prepareo	l & Analy	zed: May-0	01-19				
Analyte	Result	Flags / Qualifiers	MDL	Reporting Limit	Units	Spike Level	Source Result	%REC	%REC Limits	RPD	RPD Limit
<u> </u>		Quantiers	МЕ	- Limit			resure			МЪ	
Surrogate: perfluoro(1,2-13C2)hexanesulfonateC13(2)-4:	122				ng/L	149.6		81.5%	70-130		
Surrogate: M9PFNA	135				"	160.0		84.2%	70-130		
					"						
Surrogate: M8PFOSA	139				"	160.0		86.9%	70-130		
Surrogate: M8PFOS	132				"	153.1		86.1%	70-130		
Surrogate: M8PFOA	132				"	160.0		82.3%	70-130		
Surrogate: M7PFUnA	133				"	160.0		82.9%	70-130		
Surrogate: M6PFDA	137				"	160.0		85.6%	70-130		
Surrogate: M5PFPeA	137				"	160.0		85.6%	70-130		
Surrogate: M5PFHxA	143				"	160.0		89.4%	70-130		
Surrogate: M4PFHpA	135				"	160.0		84.1%	70-130		
Surrogate: M3PFHxS	129				"	151.4		85.5%	70-130		
Surrogate: M3PFBS	121				"	148.6		81.7%	70-130		
Surrogate: M2PFTreA	125				"	160.0		77.8%	70-130		
Surrogate: MPFDoA	133				"	160.0		83.0%	70-130		
Surrogate: MPFBA	140				"	160.0		87.3%	70-130		

Blank (B19E001-BLK2)				Prepared	& Analy	zed: May-(11-19				
Analyte	Result	Flags / Qualifiers	MDL	Reporting Limit	Units	Spike Level	Source Result	%REC	%REC Limits	RPD	RPD Limit
perfluorobutanoate	U			50.0	ng/L						
perfluoropentanoate	U			50.0	"						
perfluorohexanoate	U			10.0	"						
perfluoroheptanoate	U			10.0	"						
perfluorooctanoate	U			10.0	"						
perfluorononanoate	U			10.0	"						
perfluorodecanoate	U			10.0	"						
perfluoroundecanoate	U			10.0	"						
perfluorododecanoate	U			10.0	"						
perfluorotridecanoate	U			10.0	"						
perfluorotetradecanoate	U			10.0	"						
perfluorobutyl sulfonate	U			10.0	"						
perfluorohexyl sulfonate	U			10.0	"						
perfluorooctyl sulfonate	U			10.0	"						

Chicago Regional Laboratory

536 South Clark Street, Chicago, IL 60605 Phone:(312)353-8370 Fax:(312)886-2591

Region 6, US EPA Project: R06 Deer Park PFAS

10625 Fallstone RoadProject Number: [none]Reported:Houston TX, 77099Project Manager: Matthew LoeselMay-02-19 16:52

Analysis by LC MS MS - Quality Control US EPA Region 5 Chicago Regional Laboratory

Batch B19E001 - *** DEFAULT PREP ***

Blank (B19E001-BLK2)				Prepared	l & Analy	zed: May-()1-19				
		Flags /		Reporting		Spike	Source		%REC		RPD
Analyte	Result	Qualifiers	MDL	Limit	Units	Level	Result	%REC	Limits	RPD	Limit
1H,1H,2H,2H-perfluorohexane	U			10.0	ng/L						
sulfonate (4:2 FTS)											
perfluoro-1-pentanesulfonate	U			10.0	"						
(PFPeS) 1H,1H,2H,2H-perfluorooctane	U			10.0	,,						
sulfonate (6:2 FTS)	C			10.0							
perfluoro-1-heptanesulfonate	U			10.0	"						
(PFHpS)											
perfluoro-1-octanesulfonamide	U			10.0	"						
(FOSA)				10.0	,,						
1H,1H,2H,2H-perfluorodecane	U			10.0	"						
sulfonate (8:2 FTS) perfluoro-1-nonanesulfonate (PFNS)	U			10.0	"						
•				10.0	,,						
N-MeFOSAA	U				,,						
N-EtFOSAA	U			10.0							
perfluoro-1-decanesulfonate (PFDS)	U			10.0	"						
Surrogate: D5-N-EtFOSAA	148				"	160.0		92.5%	70-130		
Surrogate: D3-N-MeFOSAA	141				"	160.0		87.9%	70-130		
Surrogate: perfluoro- (1,2-13C2)decanesulfonateC13(2)-8:2 FTS	130				"	154.9		84.1%	70-130		
Surrogate: perfluoro- (1,2-13C2)octanesulfonateC13(2)-6:2 FTS	128				"	151.8		84.3%	70-130		
Surrogate: perfluoro(1,2-13C2)hexanesulfonateC13(2)-4:	125				"	149.6		83.3%	70-130		
Surrogate: M9PFNA	133				"	160.0		83.4%	70-130		
Surrogate: M8PFOSA	138				"	160.0		86.3%	70-130		
Surrogate: M8PFOS	139				"	153.1		90.8%	70-130		
Surrogate: M8PFOA	135				"	160.0		84.6%	70-130		
Surrogate: M7PFUnA	137				"	160.0		85.7%	70-130		
Surrogate: M6PFDA	137				"	160.0		85.9%	70-130		
Surrogate: M5PFPeA	134				"	160.0		83.9%	70-130		
Surrogate: M5PFHxA	143				"	160.0		89.2%	70-130		
Surrogate: M4PFHpA	137				"	160.0		85.5%	70-130		
Surrogate: M3PFHxS	132				"	151.4		87.2%	70-130		
Surrogate: M3PFBS	125				"	148.6		83.9%	70-130		
Surrogate: M2PFTreA	135				"	160.0		84.2%	70-130		
					"						
Surrogate: MPFDoA	139				"	160.0		86.8%	70-130		
Surrogate: MPFBA	140					160.0		87.4%	70-130		

Chicago Regional Laboratory

536 South Clark Street, Chicago, IL 60605 Phone:(312)353-8370 Fax:(312)886-2591

Region 6, US EPA Project: R06 Deer Park PFAS

10625 Fallstone RoadProject Number: [none]Reported:Houston TX, 77099Project Manager: Matthew LoeselMay-02-19 16:52

Analysis by LC MS MS - Quality Control US EPA Region 5 Chicago Regional Laboratory

Batch B19E001 - *** DEFAULT PREP ***

LCS (B19E001-BS1)	Prepared: May-01-19 Analyzed: May-02-19										
Analyte	Result	Flags / Qualifiers	MDL	Reporting Limit	Units	Spike Level	Source Result	%REC	%REC Limits	RPD	RPD Limit
perfluorobutanoate	676			50.0	ng/L	800.0		84.5%	70-130		
perfluoropentanoate	640			50.0	"	800.0		80.0%	70-130		
perfluorohexanoate	135			10.0	"	160.0		84.7%	70-130		
perfluoroheptanoate	133			10.0	"	160.0		83.3%	70-130		
perfluorooctanoate	131			10.0	"	160.0		81.9%	70-130		
perfluorononanoate	133			10.0	"	160.0		83.2%	70-130		
perfluorodecanoate	134			10.0	"	160.0		83.8%	70-130		
					"						
perfluoroundecanoate	133			10.0		160.0		83.4%	70-130		
perfluorododecanoate	135			10.0	"	160.0		84.6%	70-130		
perfluorotridecanoate	135			10.0	"	160.0		84.6%	70-130		
perfluorotetradecanoate	133			10.0	"	160.0		83.3%	70-130		
perfluorobutyl sulfonate	134			10.0	"	160.0		84.0%	70-130		
perfluorohexyl sulfonate	126			10.0	"	160.0		78.9%	70-130		
perfluorooctyl sulfonate	140			10.0	"	160.0		87.3%	70-130		
1H,1H,2H,2H-perfluorohexane	141			10.0	"	160.0		88.3%	70-130		
sulfonate (4:2 FTS)											
perfluoro-1-pentanesulfonate	142			10.0	"	160.0		88.9%	70-130		
(PFPeS)	442			10.0	"	160.0		70.00/	70.120		
1H,1H,2H,2H-perfluorooctane	113			10.0		160.0		70.8%	70-130		
sulfonate (6:2 FTS) perfluoro-1-heptanesulfonate	141			10.0	"	160.0		88.1%	70-130		
(PFHpS)	141			10.0		100.0		00.170	70-130		
perfluoro-1-octanesulfonamide	142			10.0	"	160.0		88.5%	70-130		
(FOSA)											
1H,1H,2H,2H-perfluorodecane	147			10.0	"	160.0		92.1%	70-130		
sulfonate (8:2 FTS)											
perfluoro-1-nonanesulfonate (PFNS)	140			10.0	"	160.0		87.8%	70-130		
N-MeFOSAA	142			10.0	"	160.0		88.7%	70-130		
N-EtFOSAA	143			10.0	"	160.0		89.3%	70-130		
perfluoro-1-decanesulfonate (PFDS)	143			10.0	"	160.0		89.1%	70-130		
Surrogate: D5-N-EtFOSAA	144				"	160.0		90.2%	70-130		
Surrogate: D3-N-MeFOSAA	141				"	160.0		87.8%	70-130		
Surrogate: perfluoro- (1,2-13C2)decanesulfonateC13(2)-8:2 FTS	135				"	154.9		87.2%	70-130		
Surrogate: perfluoro- (1,2-13C2)octanesulfonateC13(2)-6:2 FTS	136				"	151.8		89.4%	70-130		

Chicago Regional Laboratory

536 South Clark Street, Chicago, IL 60605 Phone:(312)353-8370 Fax:(312)886-2591

Region 6, US EPA Project: R06 Deer Park PFAS

10625 Fallstone RoadProject Number: [none]Reported:Houston TX, 77099Project Manager: Matthew LoeselMay-02-19 16:52

Analysis by LC MS MS - Quality Control US EPA Region 5 Chicago Regional Laboratory

Batch B19E001 - *** DEFAULT PREP ***

LCS (B19E001-BS1)	Prepared: May-01-19 Analyzed: May-02-19											
Analyte	Result	Flags / Qualifiers	MDL	Reporting Limit	Units	Spike Level	Source Result	%REC	%REC Limits	RPD	RPD Limit	
Surrogate:	130				ng/L	149.6		87.2%	70-130			
perfluoro(1,2-13C2)hexanesulfonateC13(2)-4:												
Surrogate: M9PFNA	139				"	160.0		86.6%	70-130			
Surrogate: M8PFOSA	143				"	160.0		89.1%	70-130			
Surrogate: M8PFOS	136				"	153.1		88.9%	70-130			
Surrogate: M8PFOA	137				"	160.0		85.7%	70-130			
Surrogate: M7PFUnA	139				"	160.0		86.6%	70-130			
Surrogate: M6PFDA	138				"	160.0		86.5%	70-130			
Surrogate: M5PFPeA	136				"	160.0		85.1%	70-130			
Surrogate: M5PFHxA	146				"	160.0		91.4%	70-130		2	
Surrogate: M4PFHpA	139				"	160.0		86.6%	70-130			
Surrogate: M3PFHxS	134				"	151.4		88.7%	70-130			
Surrogate: M3PFBS	126				"	148.6		84.5%	70-130			
Surrogate: M2PFTreA	137				"	160.0		85.5%	70-130			
Surrogate: MPFDoA	142				"	160.0		88.7%	70-130			
Surrogate: MPFBA	143				"	160.0		89.5%	70-130			

LCS Dup (B19E001-BSD1)	Prepared: May-01-19 Analyzed: May-02-19

11 cpured. May 01 15 finding 02 15											
Result	Flags / Qualifiers	MDL	Reporting Limit	Units	Spike Level	Source Result	%REC	%REC Limits	RPD	RPD Limit	
697			50.0	ng/L	800.0		87.1%	70-130	3.04	30	
671			50.0	"	800.0		83.9%	70-130	4.73	30	
141			10.0	"	160.0		88.2%	70-130	4.13	30	
143			10.0	"	160.0		89.1%	70-130	6.65	30	
134			10.0	"	160.0		83.6%	70-130	2.15	30	
137			10.0	"	160.0		85.6%	70-130	2.75	30	
142			10.0	"	160.0		88.6%	70-130	5.54	30	
141			10.0	"	160.0		88.1%	70-130	5.47	30	
137			10.0	"	160.0		85.8%	70-130	1.39	30	
145			10.0	"	160.0		90.5%	70-130	6.65	30	
143			10.0	"	160.0		89.1%	70-130	6.69	30	
144			10.0	"	160.0		90.1%	70-130	6.99	30	
134			10.0	"	160.0		83.8%	70-130	5.93	30	
140			10.0	"	160.0		87.3%	70-130	0.0732	30	
	697 671 141 143 134 137 142 141 137 145 143 144	Result Qualifiers 697 671 141 143 134 137 142 141 137 145 143 144 134	Result Qualifiers MDL 697 671 141 143 134 137 142 141 137 145 143 144 134	Result Qualifiers MDL Limit 697 50.0 671 50.0 141 10.0 143 10.0 134 10.0 142 10.0 141 10.0 137 10.0 141 10.0 145 10.0 143 10.0 144 10.0 134 10.0	Result Qualifiers MDL Limit Units 697 50.0 ng/L 671 50.0 " 141 10.0 " 143 10.0 " 134 10.0 " 142 10.0 " 141 10.0 " 137 10.0 " 145 10.0 " 143 10.0 " 144 10.0 " 134 10.0 "	Result Qualifiers MDL Limit Units Level 697 50.0 ng/L 800.0 671 50.0 " 800.0 141 10.0 " 160.0 143 10.0 " 160.0 134 10.0 " 160.0 142 10.0 " 160.0 141 10.0 " 160.0 137 10.0 " 160.0 145 10.0 " 160.0 143 10.0 " 160.0 144 10.0 " 160.0 134 10.0 " 160.0	Result Qualifiers MDL Limit Units Level Result 697 50.0 ng/L 800.0 671 50.0 " 800.0 141 10.0 " 160.0 143 10.0 " 160.0 134 10.0 " 160.0 142 10.0 " 160.0 141 10.0 " 160.0 137 10.0 " 160.0 145 10.0 " 160.0 143 10.0 " 160.0 144 10.0 " 160.0 134 10.0 " 160.0	Result Qualifiers MDL Limit Units Level Result %REC 697 50.0 ng/L 800.0 87.1% 671 50.0 "800.0 83.9% 141 10.0 "160.0 88.2% 143 10.0 "160.0 89.1% 134 10.0 "160.0 85.6% 142 10.0 "160.0 88.6% 141 10.0 "160.0 88.1% 137 10.0 "160.0 85.8% 145 10.0 "160.0 90.5% 143 10.0 "160.0 89.1% 144 10.0 "160.0 89.1% 144 10.0 "160.0 89.1%	Result Qualifiers MDL Limit Units Level Result %REC Limits 697 50.0 ng/L 800.0 87.1% 70-130 671 50.0 "800.0 83.9% 70-130 141 10.0 "160.0 88.2% 70-130 143 10.0 "160.0 83.6% 70-130 137 10.0 "160.0 85.6% 70-130 141 10.0 "160.0 88.6% 70-130 141 10.0 "160.0 85.8% 70-130 145 10.0 "160.0 85.8% 70-130 143 10.0 "160.0 89.1% 70-130 144 10.0 "160.0 89.1% 70-130 134 10.0 "160.0 89.1% 70-130	Result Qualifiers MDL Limit Units Level Result %REC Limits RPD 697 50.0 ng/L 800.0 87.1% 70-130 3.04 671 50.0 " 800.0 83.9% 70-130 4.73 141 10.0 " 160.0 88.2% 70-130 4.13 143 10.0 " 160.0 89.1% 70-130 6.65 134 10.0 " 160.0 83.6% 70-130 2.15 137 10.0 " 160.0 88.6% 70-130 5.54 141 10.0 " 160.0 88.1% 70-130 5.47 137 10.0 " 160.0 85.8% 70-130 5.47 137 10.0 " 160.0 85.8% 70-130 1.39 145 10.0 " 160.0 89.1% 70-130 6.65 143 10.0	

Chicago Regional Laboratory

536 South Clark Street, Chicago, IL 60605 Phone:(312)353-8370 Fax:(312)886-2591

Region 6, US EPA Project: R06 Deer Park PFAS

10625 Fallstone RoadProject Number: [none]Reported:Houston TX, 77099Project Manager: Matthew LoeselMay-02-19 16:52

Analysis by LC MS MS - Quality Control US EPA Region 5 Chicago Regional Laboratory

Batch B19E001 - *** DEFAULT PREP ***

LCS Dup (B19E001-BSD1)]	Prepared: Ma	y-01-19 A	nalyzed: N	1ay-02-19				
Analyte	Result	Flags / Qualifiers	MDL	Reporting Limit	Units	Spike Level	Source Result	%REC	%REC Limits	RPD	RPD Limit
1H,1H,2H,2H-perfluorohexane	145			10.0	ng/L	160.0		90.4%	70-130	2.37	30
sulfonate (4:2 FTS)											
perfluoro-1-pentanesulfonate	148			10.0	"	160.0		92.8%	70-130	4.27	30
(PFPeS)	100			10.0	"	160.0		75.20/	70.130	6.10	20
1H,1H,2H,2H-perfluorooctane	120			10.0		160.0		75.3%	70-130	6.18	30
sulfonate (6:2 FTS) perfluoro-1-heptanesulfonate	149			10.0	"	160.0		93.2%	70-130	5.58	30
(PFHpS)									, , , , , ,		
perfluoro-1-octanesulfonamide	144			10.0	"	160.0		90.1%	70-130	1.80	30
(FOSA)											
1H,1H,2H,2H-perfluorodecane	146			10.0	"	160.0		91.2%	70-130	0.923	30
sulfonate (8:2 FTS)											
perfluoro-1-nonanesulfonate (PFNS)	145			10.0	"	160.0		90.5%	70-130	3.09	30
N-MeFOSAA	150			10.0	"	160.0		93.6%	70-130	5.43	30
N-EtFOSAA	159			10.0	"	160.0		99.6%	70-130	10.9	30
perfluoro-1-decanesulfonate (PFDS)	145			10.0	"	160.0		90.8%	70-130	1.91	30
Surrogate: D5-N-EtFOSAA	141				"	160.0		87.9%	70-130		
Surrogate: D3-N-MeFOSAA	139				"	160.0		86.7%	70-130		
Surrogate: perfluoro- (1,2-13C2)decanesulfonateC13(2)-8:2 FTS	135				"	154.9		87.1%	70-130		
Surrogate: perfluoro- (1,2-13C2)octanesulfonateC13(2)-6:2 FTS	126				"	151.8		83.3%	70-130		
Surrogate: perfluoro(1,2-13C2)hexanesulfonateC13(2)-4:	127				"	149.6		85.2%	70-130		
Surrogate: M9PFNA	132				"	160.0		82.8%	70-130		
Surrogate: M8PFOSA	130				"	160.0		81.4%	70-130		
Surrogate: M8PFOS	131				"	153.1		85.3%	70-130		
Surrogate: M8PFOA	131				"	160.0		81.9%	70-130		
Surrogate: M7PFUnA	133				"	160.0		83.1%	70-130		
Surrogate: M6PFDA	134				"	160.0		83.7%	70-130		
Surrogate: M5PFPeA	127				"	160.0		79.5%	70-130		
Surrogate: M5PFHxA	141				"	160.0		87.8%	70-130		
Surrogate: M4PFHpA	133				"	160.0		83.3%	70-130		
Surrogate: M3PFHxS	128				"	151.4		84.8%	70-130		
Surrogate: M3PFBS	120				"	148.6		80.8%	70-130		
Surrogate: M2PFTreA	133				"	160.0		83.0%	70-130		
Surrogate: MPFDoA	133				"	160.0		83.2%	70-130		
Surrogate: MPFBA	135				"	160.0		84.6%	70-130		

Region 6, US EPA

Environmental Protection Agency Region 5 Chicago Regional Laboratory

536 South Clark Street, Chicago, IL 60605 Phone:(312)353-8370 Fax:(312)886-2591

Project: R06 Deer Park PFAS

10625 Fallstone RoadProject Number: [none]Reported:Houston TX, 77099Project Manager: Matthew LoeselMay-02-19 16:52

Analysis by LC MS MS - Quality Control US EPA Region 5 Chicago Regional Laboratory

Batch B19E001 - *** DEFAULT PREP ***

Duplicate (B19E001-DUP1)	Source	: 1905002-18]	Prepared: Ma	y-01-19 A	nalyzed: N	1ay-02-19				
		Flags /		Reporting		Spike	Source		%REC		RPD
Analyte	Result	Qualifiers	MDL	Limit	Units	Level	Result	%REC	Limits	RPD	Limit
perfluorobutanoate	20.4			41.6	ng/L		26.6			26.4	30
perfluoropentanoate	34.3			41.6	"		39.4			13.8	30
perfluorohexanoate	40.1			8.32	"		36.8			8.64	30
perfluoroheptanoate	15.2			8.32	"		14.9			2.09	30
perfluorooctanoate	8.81			8.32	"		9.11			3.27	30
perfluorononanoate	1.88			8.32	"		1.83			2.33	30
perfluorodecanoate	1.37			8.32	"		U				30
perfluoroundecanoate	U			8.32	"		U				30
perfluorododecanoate	U			8.32	"		U				30
perfluorotridecanoate	U			8.32	"		U				30
perfluorotetradecanoate	U			8.32	"		U				30
perfluorobutyl sulfonate	13.0			8.32	"		13.6			4.61	30
perfluorohexyl sulfonate	16.6			8.32	"		15.6			6.32	30
perfluorooctyl sulfonate	55.5			8.32	"		51.4			7.67	30
1H,1H,2H,2H-perfluorohexane	3.38			8.32	"		2.68			23.2	30
sulfonate (4:2 FTS)											
perfluoro-1-pentanesulfonate	3.84			8.32	"		3.13			20.5	30
(PFPeS) 1H,1H,2H,2H-perfluorooctane	483			8.32	"		469			2.89	30
sulfonate (6:2 FTS)	405			0.52			105			2.09	50
perfluoro-1-heptanesulfonate	U			8.32	"		U				30
(PFHpS)											
perfluoro-1-octanesulfonamide	1.76			8.32	"		1.56			12.1	30
(FOSA)											
1H,1H,2H,2H-perfluorodecane	4.42			8.32	"		4.07			8.31	30
sulfonate (8:2 FTS)											
perfluoro-1-nonanesulfonate (PFNS)	U			8.32	"		U				30
N-MeFOSAA	1.78			8.32	"		1.69			5.08	30
N-EtFOSAA	U			8.32	"		U				30
perfluoro-1-decanesulfonate (PFDS)	U			8.32	"		U				30
Surrogate: D5-N-EtFOSAA	76.5				"	106.2		72.0%	70-130		
Surrogate: D3-N-MeFOSAA	74.4				"	106.2		70.0%	70-130		
Surrogate: perfluoro-	64.3	Q			"	102.8		62.5%	70-130		
(1,2-13C2)decanesulfonateC13(2)-8:2 FTS Surrogate: perfluoro-	90.7				"	100.8		89.9%	70-130		
(1,2-13C2)octanesulfonateC13(2)-6:2 FTS											

Chicago Regional Laboratory

536 South Clark Street, Chicago, IL 60605 Phone:(312)353-8370 Fax:(312)886-2591

Region 6, US EPA Project: R06 Deer Park PFAS

10625 Fallstone RoadProject Number: [none]Reported:Houston TX, 77099Project Manager: Matthew LoeselMay-02-19 16:52

Analysis by LC MS MS - Quality Control US EPA Region 5 Chicago Regional Laboratory

Batch B19E001 - *** DEFAULT PREP ***

Duplicate (B19E001-DUP1)	Source:	1905002-18	F	Prepared: Ma	ıy-01-19 <i>A</i>	nalyzed: N	1ay-02-19				
Ameliote	Result	Flags / Qualifiers	MDL	Reporting Limit	Units	Spike Level	Source Result	%REC	%REC Limits	RPD	RPD Limit
Analyte			MDL	Limit			Result			Ki D	Lillit
Surrogate:	68.5	Q			ng/L	99.34		69.0%	70-130		
perfluoro(1,2-13C2)hexanesulfonateC13(2)-4:											
Surrogate: M9PFNA	80.3				"	106.2		75.6%	70-130		
Surrogate: M8PFOSA	81.7				"	106.2		76.9%	70-130		
Surrogate: M8PFOS	80.6				"	101.7		79.3%	70-130		
Surrogate: M8PFOA	81.6				"	106.2		76.8%	70-130		
Surrogate: M7PFUnA	72.4	Q			"	106.2		68.1%	70-130		
Surrogate: M6PFDA	78.8				"	106.2		74.2%	70-130		
Surrogate: M5PFPeA	95.7				"	106.2		90.0%	70-130		
Surrogate: M5PFHxA	101				"	106.2		95.4%	70-130		
Surrogate: M4PFHpA	95.5				"	106.2		89.9%	70-130		
Surrogate: M3PFHxS	90.3				"	100.5		89.8%	70-130		
Surrogate: M3PFBS	95.2				"	98.70		96.5%	70-130		
Surrogate: M2PFTreA	0.00	Q			"	106.2		%	70-130		
Surrogate: MPFDoA	54.4	Q			"	106.2		51.2%	70-130		
Surrogate: MPFBA	109				"	106.2		103%	70-130		

WIKE CHECK (DIDEOUI-WIKEI)				repareu. Ma	y 01 1/1	inuly zeu. 1	IU 02 17				
Analyte	Result	Flags / Qualifiers	MDL	Reporting Limit	Units	Spike Level	Source Result	%REC	%REC Limits	RPD	RPD Limit
perfluorobutanoate	52.9			50.0	ng/L	50.00		106%	50-150		
perfluoropentanoate	48.9			50.0	"	50.00		97.9%	50-150		
perfluorohexanoate	10.3			10.0	"	10.00		103%	50-150		
perfluoroheptanoate	10.1			10.0	"	10.00		101%	50-150		
perfluorooctanoate	9.19			10.0	"	10.00		91.9%	50-150		
perfluorononanoate	8.55			10.0	"	10.00		85.5%	50-150		-
perfluorodecanoate	8.69			10.0	"	10.00		86.9%	50-150		
perfluoroundecanoate	7.64			10.0	"	10.00		76.4%	50-150		
perfluorododecanoate	9.38			10.0	"	10.00		93.8%	50-150		
perfluorotridecanoate	8.25			10.0	"	10.00		82.5%	50-150		
perfluorotetradecanoate	8.47			10.0	"	10.00		84.7%	50-150		
perfluorobutyl sulfonate	11.2			10.0	"	10.00		112%	50-150		
perfluorohexyl sulfonate	9.00			10.0	"	10.00		90.0%	50-150		
perfluorooctyl sulfonate	9.08			10.0	"	10.00		90.8%	50-150		

Chicago Regional Laboratory

536 South Clark Street, Chicago, IL 60605 Phone:(312)353-8370 Fax:(312)886-2591

Region 6, US EPA Project: R06 Deer Park PFAS

10625 Fallstone RoadProject Number: [none]Reported:Houston TX, 77099Project Manager: Matthew LoeselMay-02-19 16:52

Analysis by LC MS MS - Quality Control US EPA Region 5 Chicago Regional Laboratory

Batch B19E001 - *** DEFAULT PREP ***

MRL Check (B19E001-MRL1)]	Prepared: Ma	y-01-19 A	nalyzed: N	May-02-19				
Analyte	Result	Flags / Qualifiers	MDL	Reporting Limit	Units	Spike Level	Source Result	%REC	%REC Limits	RPD	RPD Limit
1H,1H,2H,2H-perfluorohexane	8.73			10.0	ng/L	10.00		87.3%	50-150		
sulfonate (4:2 FTS)	0				8						
perfluoro-1-pentanesulfonate	8.44			10.0	"	10.00		84.4%	50-150		
(PFPeS)											
1H,1H,2H,2H-perfluorooctane	U	Q		10.0	"	10.00		%	50-150		
sulfonate (6:2 FTS)	0.00			10.0	"	10.00		00.20/	50.150		
perfluoro-1-heptanesulfonate	8.82			10.0		10.00		88.2%	50-150		
(PFHpS) perfluoro-1-octanesulfonamide	8.03			10.0	"	10.00		80.3%	50-150		
(FOSA)	0.03			10.0		10.00		00.570	30-130		
1H,1H,2H,2H-perfluorodecane	8.37			10.0	"	10.00		83.7%	50-150		
sulfonate (8:2 FTS)											
perfluoro-1-nonanesulfonate (PFNS)	8.98			10.0	"	10.00		89.8%	50-150		
N-MeFOSAA	10.0			10.0	"	10.00		100%	50-150		
N-EtFOSAA	9.65			10.0	"	10.00		96.5%	50-150		
perfluoro-1-decanesulfonate (PFDS)	9.16			10.0	"	10.00		91.6%	50-150		
Surrogate: D5-N-EtFOSAA	142				"	160.0		88.4%	70-130		
Surrogate: D3-N-MeFOSAA	141				"	160.0		88.1%	70-130		
Surrogate: perfluoro- (1,2-13C2)decanesulfonateC13(2)-8:2 FTS	127				"	154.9		82.0%	70-130		
Surrogate: perfluoro- (1,2-13C2)octanesulfonateC13(2)-6:2 FTS	129				"	151.8		84.7%	70-130		
Surrogate: perfluoro(1,2-13C2)hexanesulfonateC13(2)-4:	127				"	149.6		85.0%	70-130		
Surrogate: M9PFNA	139				"	160.0		87.1%	70-130		
Surrogate: M8PFOSA	142				"	160.0		88.7%	70-130		
Surrogate: M8PFOS	135				"	153.1		88.5%	70-130		
Surrogate: M8PFOA	134				"	160.0		83.7%	70-130		
Surrogate: M7PFUnA	136				"	160.0		85.1%	70-130		
Surrogate: M6PFDA	139				"	160.0		86.9%	70-130		
Surrogate: M5PFPeA	137				"	160.0		85.4%	70-130		
Surrogate: M5PFHxA	146				"	160.0		91.3%	70-130		
Surrogate: M4PFHpA	140				"	160.0		87.7%	70-130		
Surrogate: M3PFHxS	131				"	151.4		86.5%	70-130		
Surrogate: M3PFBS	131				"	148.6		87.8%	70-130		
Surrogate: M2PFTreA	136				"	160.0		85.1%	70-130		
Surrogate: MPFDoA	138				"	160.0		86.5%	70-130		
Surrogate: MPFBA	140				"	160.0		87.4%	70-130		

Region 6, US EPA

Environmental Protection Agency Region 5 Chicago Regional Laboratory

536 South Clark Street, Chicago, IL 60605 Phone:(312)353-8370 Fax:(312)886-2591

Project: R06 Deer Park PFAS

10625 Fallstone RoadProject Number: [none]Reported:Houston TX, 77099Project Manager: Matthew LoeselMay-02-19 16:52

Analysis by LC MS MS - Quality Control US EPA Region 5 Chicago Regional Laboratory

Batch B19E001 - *** DEFAULT PREP ***

Prepared: May-01-19 Analyzed: May-02-19										
Result	Flags / Qualifiers	MDL	Reporting Limit	Units	Spike Level	Source Result	%REC	%REC Limits	RPD	RPD Limit
55.1			50.0	ng/L	50.00		110%	50-150		
55.0			50.0	"	50.00		110%	50-150		
11.6			10.0	"	10.00		116%	50-150		
10.3			10.0	"	10.00		103%	50-150		
9.92			10.0	"	10.00		99.2%	50-150		
8.67			10.0	"	10.00		86.7%	50-150		
8.77			10.0	"	10.00		87.7%	50-150		
				"						
				"						
10.2			10.0	"	10.00		102%	50-150		
9.92			10.0	"	10.00		99.2%	50-150		
9.56			10.0	"	10.00		95.6%	50-150		
9.72			10.0	"	10.00		97.2%	50-150		
II	0		10.0	"	10.00		0/0	50-150		
C	Ψ.		10.0		10.00		70	50 150		
10.3			10.0	"	10.00		103%	50-150		
10.6			10.0	"	10.00		106%	50-150		
			10.0		10.00		0.5 =0.4	#0.4#0		
9.67			10.0		10.00		96.7%	50-150		
9.17			10.0	"	10.00		91.7%	50-150		
11.7			10.0	"	10.00		117%	50-150		
10.8			10.0	"	10.00		108%	50-150		
			10.0	"	10.00			50-150		
				"						
				"						
				"						
128					134.9		02.070	/0-130		
126				"	151.8		83.1%	70-130		
	55.1 55.0 11.6 10.3 9.92 8.67 8.77 9.01 11.5 9.88 9.33 12.7 10.2 9.92 9.56 9.72 U 10.3 10.6 9.67 9.17 11.7 10.8 9.57 144 143 128	Result Qualifiers 55.1 55.0 11.6 10.3 9.92 8.67 8.77 9.01 11.5 9.88 9.33 12.7 10.2 9.92 9.56 9.72 U Q 10.3 10.6 9.67 9.17 11.7 10.8 9.57 144 143 128	Result Qualifiers MDL	Result Flags / Qualifiers MDL MDL Reporting Limit 55.1 50.0 50.0 11.6 10.0 10.0 10.3 10.0 10.0 9.92 10.0 10.0 8.67 10.0 10.0 9.01 10.0 10.0 9.88 10.0 10.0 9.88 10.0 10.0 9.33 10.0 10.0 9.92 10.0 10.0 9.92 10.0 10.0 9.72 10.0 10.0 10.3 10.0 10.0 10.6 10.0 10.0 9.67 10.0 10.0 11.7 10.0 10.0 10.8 10.0 10.0 9.57 10.0 10.0 144 143 128	Result Flags / Qualifiers MDL Reporting Limit Units 55.1 50.0 ng/L 55.0 50.0 " 11.6 10.0 " 10.3 10.0 " 9.92 10.0 " 8.67 10.0 " 8.77 10.0 " 9.01 10.0 " 9.02 10.0 " 9.88 10.0 " 9.89 10.0 " 10.2 10.0 " 9.92 10.0 " 9.92 10.0 " 9.72 10.0 " 10.3 10.0 " 10.6 10.0 " 9.67 10.0 " 10.0 " " 10.0 " " 10.0 " " 10.0 " " 10.0 " "	Result Qualifiers MDL Reporting Limit Units Spike Level 55.1 50.0 ng/L 50.00 55.0 50.0 " 50.00 11.6 10.0 " 10.00 10.3 10.0 " 10.00 9.92 10.0 " 10.00 8.67 10.0 " 10.00 8.77 10.0 " 10.00 9.01 10.0 " 10.00 9.88 10.0 " 10.00 9.89 10.0 " 10.00 10.2 10.0 " 10.00 9.92 10.0 " 10.00 9.92 10.0 " 10.00 9.72 10.0 " 10.00 9.72 10.0 " 10.00 10.6 10.0 " 10.00 9.67 10.0 " 10.00 11.7 10.0 "	Result Flags / Qualifiers MDL Limit Limit Units Spike Level Result Source Result 55.1 50.0 ng/L 50.00	Result Flags / Qualifiers MDL Limit Limit Units Spike Level Result Source Result %REC 55.1 50.0 ng/L 50.00 110% 55.0 50.0 " 50.00 110% 11.6 10.0 " 10.00 116% 10.3 10.0 " 10.00 192% 8.67 10.0 " 10.00 86.7% 8.77 10.0 " 10.00 87.7% 9.01 10.0 " 10.00 90.1% 11.5 10.0 " 10.00 90.1% 11.5 10.0 " 10.00 90.1% 11.5 10.0 " 10.00 90.1% 11.5 10.0 " 10.00 90.1% 12.7 10.0 " 10.00 93.3% 12.7 10.0 " 10.00 102% 9.92 10.0 " 10.00 92.2%	Result Flags / Qualifiers MDL Reporting Limit Units Spike Level Result Source Result %REC Limits 55.1 50.0 ng/L 50.00 110% 50-150 55.0 50.0 " 50.00 110% 50-150 11.6 10.0 " 10.00 116% 50-150 10.3 10.0 " 10.00 103% 50-150 8.67 10.0 " 10.00 99.2% 50-150 8.77 10.0 " 10.00 86.7% 50-150 9.01 10.0 " 10.00 87.7% 50-150 9.70 10.0 " 10.00 90.1% 50-150 9.88 10.0 " 10.00 98.8% 50-150 9.88 10.0 " 10.00 98.8% 50-150 10.2 10.0 " 10.00 93.3% 50-150 10.2 10.0 " 10.00 92.2%	Result Flags / Qualifiers MDL Reporting Limit Units Spike Result Source Result %REC Limits RPD 55.1 50.0 10.0 50.00 110% 50-150 50.00 110% 50-150 50.00 110% 50-150 50.00 110% 50-150 50.150 50.00 110% 50-150 50.150

Chicago Regional Laboratory

536 South Clark Street, Chicago, IL 60605 Phone:(312)353-8370 Fax:(312)886-2591

Region 6, US EPA Project: R06 Deer Park PFAS

10625 Fallstone RoadProject Number: [none]Reported:Houston TX, 77099Project Manager: Matthew LoeselMay-02-19 16:52

Analysis by LC MS MS - Quality Control US EPA Region 5 Chicago Regional Laboratory

Batch B19E001 - *** DEFAULT PREP ***

MRL Check (B19E001-MRL2)	Prepared: May-01-19 Analyzed: May-02-19										
Analyte	Result	Flags / Qualifiers	MDL	Reporting Limit	Units	Spike Level	Source Result	%REC	%REC Limits	RPD	RPD Limit
Surrogate:	127				ng/L	149.6		84.9%	70-130		
perfluoro(1,2-13C2)hexanesulfonateC13(2)-4:					,,	160.0		06.107	70.120		
Surrogate: M9PFNA	138				"	160.0		86.1%	70-130		
Surrogate: M8PFOSA	133				"	160.0		83.0%	70-130		
Surrogate: M8PFOS	135				"	153.1		87.9%	70-130		
Surrogate: M8PFOA	132				"	160.0		82.4%	70-130		
Surrogate: M7PFUnA	138				"	160.0		86.0%	70-130		
Surrogate: M6PFDA	137				"	160.0		85.6%	70-130		
Surrogate: M5PFPeA	138				"	160.0		86.1%	70-130		
Surrogate: M5PFHxA	147				"	160.0		91.8%	70-130		-
Surrogate: M4PFHpA	139				"	160.0		86.7%	70-130		
Surrogate: M3PFHxS	133				"	151.4		87.7%	70-130		
Surrogate: M3PFBS	122				"	148.6		82.2%	70-130		
Surrogate: M2PFTreA	134				"	160.0		83.7%	70-130		
Surrogate: MPFDoA	139				"	160.0		87.1%	70-130		
Surrogate: MPFBA	140				"	160.0		87.7%	70-130		

Matrix Spike (B19E001-MS1)	Source:	1905002-18	I	Prepared: M	ay-01-19 A	nalyzed: N	1ay-02-19				
Analyte	Result	Flags / Qualifiers	MDL	Reporting Limit	Units	Spike Level	Source Result	%REC	%REC Limits	RPD	RPD Limit
perfluorobutanoate	682			44.7	ng/L	630.2	26.6	104%	70-130		
perfluoropentanoate	625			44.7	"	630.2	39.4	93.0%	70-130		
perfluorohexanoate	162			8.94	"	126.0	36.8	99.4%	70-130		
perfluoroheptanoate	134			8.94	"	126.0	14.9	94.7%	70-130		
perfluorooctanoate	115			8.94	"	126.0	9.11	84.2%	70-130		
perfluorononanoate	107			8.94	"	126.0	1.83	83.1%	70-130		
perfluorodecanoate	103			8.94	"	126.0	U	81.7%	70-130		
perfluoroundecanoate	101			8.94	"	126.0	U	80.5%	70-130		
perfluorododecanoate	94.6			8.94	"	126.0	U	75.1%	70-130		
perfluorotridecanoate	75.2	Q		8.94	"	126.0	U	59.7%	70-130		
perfluorotetradecanoate	27.2	Q		8.94	"	126.0	U	21.6%	70-130		
perfluorobutyl sulfonate	145			8.94	"	126.0	13.6	104%	70-130		
perfluorohexyl sulfonate	130			8.94	"	126.0	15.6	90.5%	70-130		
perfluorooctyl sulfonate	175			8.94	"	126.0	51.4	98.0%	70-130		

Region 6, US EPA

Environmental Protection Agency Region 5

Chicago Regional Laboratory

536 South Clark Street, Chicago, IL 60605 Phone:(312)353-8370 Fax:(312)886-2591

Project: R06 Deer Park PFAS

10625 Fallstone RoadProject Number: [none]Reported:Houston TX, 77099Project Manager: Matthew LoeselMay-02-19 16:52

Analysis by LC MS MS - Quality Control US EPA Region 5 Chicago Regional Laboratory

Batch B19E001 - *** DEFAULT PREP ***

Flags / Qualifiers	MDL	Reporting Limit 8.94 8.94 8.94	Units ng/L "	Spike Level 126.0 126.0	Source Result 2.68	%REC 81.5%	%REC Limits 70-130	RPD	RPD Limit
Q	MDL	8.94 8.94 8.94	ng/L	126.0 126.0	2.68	81.5%	70-130	RPD	Limit
Q		8.94 8.94	"	126.0	3.13				
Q		8.94				102%	70-130		
Q		8.94				102%	70-130		
			"	126.0					
				120.0	469	167%	70-130		
		8.94			409	10/%	/0-130		
			"	126.0	U	94.4%	70-130		
1		8.94	"	126.0	1.56	86.5%	70-130		
1									
		8.94	"	126.0	4.07	83.3%	70-130		
		0.04	"	1260	**	06.20/	70.120		
1		8.94		126.0	U	86.2%	70-130		
		8.94	"	126.0	U	81.2%	70-130		
i		8.94	"	126.0	U	81.5%	70-130		
		8.94	"	126.0	U	80.0%	70-130		
1			"	126.0		75.7%	70-130		
)			"	126.0		74.5%	70-130		
7			"	122.0		72.7%	70-130		
,			"	119.6		98.5%	70-130		
3			"	117.9		76.6%	70-130		
5			"	126.0		78.2%	70-130		
!			"	126.0		81.3%	70-130		
,			"	120.6		88.3%	70-130		-
<u> </u>			"	126.0		81.9%	70-130		
3			"	126.0		75.6%	70-130		
?			"	126.0		78.7%	70-130		
			"	126.0		92.4%	70-130		
			"	126.0		96.2%	70-130		
!			"	126.0		90.2%	70-130		
}			"	119.2		90.2%	70-130		
<u> </u>			"	117.1		104%	70-130		
			"						
			"						
			"	120.0		/ 2.2/0	10 130		
		P Q			" 117.9 " 126.0 " 126.0 " 126.0 " 126.0 " 126.0 " 126.0 " 126.0 " 126.0 " 126.0 " 126.0 " 126.0 " 126.0 " 126.0 " 126.0 " 126.0 " 126.0 " 126.0	" 117.9 " 126.0 " 126.0 " 126.0 " 126.0 " 126.0 " 126.0 " 126.0 " 126.0 " 126.0 " 126.0 " 126.0 " 126.0 " 126.0 " 126.0 " 126.0 " 126.0	" 117.9 76.6% " 126.0 78.2% " 126.0 81.3% " 120.6 88.3% " 126.0 81.9% " 126.0 75.6% " 126.0 75.6% " 126.0 92.4% " 126.0 90.2% " 119.2 90.2% " 117.1 104% D Q " 126.0 19.0%	" 117.9 76.6% 70-130 " 126.0 78.2% 70-130 " 126.0 81.3% 70-130 " 126.0 88.3% 70-130 " 126.0 81.9% 70-130 " 126.0 75.6% 70-130 " 126.0 75.6% 70-130 " 126.0 92.4% 70-130 " 126.0 96.2% 70-130 " 126.0 90.2% 70-130 " 119.2 90.2% 70-130 " 117.1 104% 70-130	" 117.9 76.6% 70-130 " 126.0 78.2% 70-130 " 126.0 81.3% 70-130 " 120.6 88.3% 70-130 " 126.0 81.9% 70-130 " 126.0 75.6% 70-130 " 126.0 75.6% 70-130 " 126.0 92.4% 70-130 " 126.0 96.2% 70-130 " 126.0 90.2% 70-130 " 119.2 90.2% 70-130 " 117.1 104% 70-130 " 126.0 19.0% 70-130 " 126.0 19.0% 70-130

Chicago Regional Laboratory

536 South Clark Street, Chicago, IL 60605 Phone:(312)353-8370 Fax:(312)886-2591

Region 6, US EPA Project: R06 Deer Park PFAS

10625 Fallstone RoadProject Number: [none]Reported:Houston TX, 77099Project Manager: Matthew LoeselMay-02-19 16:52

Analysis by LC MS MS - Quality Control US EPA Region 5 Chicago Regional Laboratory

Batch B19E001 - *** DEFAULT PREP ***

Matrix Spike Dup (B19E001-MSD1)	Source	Source: 1905002-18 Prepared: May-01-19 Analyzed: May-02-19									
		Flags /		Reporting		Spike	Source		%REC		RPD
Analyte	Result	Qualifiers	MDL	Limit	Units	Level	Result	%REC	Limits	RPD	Limit
perfluorobutanoate	618			42.7	ng/L	567.4	26.6	104%	70-130	9.93	30
perfluoropentanoate	567			42.7	"	567.4	39.4	93.0%	70-130	9.78	30
perfluorohexanoate	150			8.55	"	113.5	36.8	100%	70-130	7.49	30
perfluoroheptanoate	120			8.55	"	113.5	14.9	92.6%	70-130	11.3	30
perfluorooctanoate	104			8.55	"	113.5	9.11	83.7%	70-130	10.3	30
perfluorononanoate	93.4			8.55	"	113.5	1.83	80.7%	70-130	13.2	30
perfluorodecanoate	92.3			8.55	"	113.5	U	81.4%	70-130	10.9	30
perfluoroundecanoate	83.5			8.55	"	113.5	U	73.6%	70-130	19.4	30
perfluorododecanoate	71.1	Q		8.55	"	113.5	U	62.7%	70-130	28.3	30
perfluorotridecanoate	38.0	Q		8.55	"	113.5	U	33.4%	70-130	65.8	30
perfluorotetradecanoate	1.60	Q		8.55	"	113.5	U	1.41%	70-130	178	30
perfluorobutyl sulfonate	130			8.55	"	113.5	13.6	102%	70-130	11.2	30
perfluorohexyl sulfonate	118			8.55	"	113.5	15.6	90.5%	70-130	9.16	30
perfluorooctyl sulfonate	156			8.55	"	113.5	51.4	92.5%	70-130	11.1	30
1H,1H,2H,2H-perfluorohexane	94.5			8.55	"	113.5	2.68	80.9%	70-130	11.0	30
sulfonate (4:2 FTS)											
perfluoro-1-pentanesulfonate	116			8.55	"	113.5	3.13	99.6%	70-130	12.7	30
(PFPeS)				0.55	"	112.5	460	55.00/	70.120	22.0	20
1H,1H,2H,2H-perfluorooctane	535	Q		8.55		113.5	469	57.9%	70-130	23.9	30
sulfonate (6:2 FTS)	106			0.55	"	112.5	* 1	02.70/	70.120	11.2	20
perfluoro-1-heptanesulfonate	106			8.55		113.5	U	93.7%	70-130	11.2	30
(PFHpS)	06.2			0.55	"	112.5	1.56	02.40/	70.120	12.0	20
perfluoro-1-octanesulfonamide	96.2			8.55		113.5	1.56	83.4%	70-130	13.9	30
(FOSA)	91.6			8.55	"	113.5	4.07	77.1%	70-130	17.4	30
1H,1H,2H,2H-perfluorodecane	91.0			6.55		113.3	4.07	//.1/0	/0-130	17.4	30
sulfonate (8:2 FTS) perfluoro-1-nonanesulfonate (PFNS)	91.1			8.55	"	113.5	U	80.3%	70-130	17.6	30
N-MeFOSAA	87.2			8.55	"	113.5	1.69	75.4%	70-130	15.9	30
N-EtFOSAA	83.1			8.55	"	113.5	U	73.3%	70-130	21.1	30
perfluoro-1-decanesulfonate (PFDS)	74.0	Q		8.55	"	113.5	U	65.3%	70-130	30.6	30
Surrogate: D5-N-EtFOSAA	80.5				"	113.5		71.0%	70-130		
Surrogate: D3-N-MeFOSAA	79.6				"	113.5		70.1%	70-130		
Surrogate: perfluoro-	74.3	Q			"	109.8		67.6%	70-130		
Surrogate: perfluoro- (1,2-13C2)decanesulfonateC13(2)-8:2 FTS	/4.3	Q				109.0		07.070	/0-130		
Surrogate: perfluoro-	101				"	107.7		93.6%	70-130		
(1,2-13C2)octanesulfonateC13(2)-6:2 FTS											

Region 6, US EPA

Environmental Protection Agency Region 5

Chicago Regional Laboratory

536 South Clark Street, Chicago, IL 60605 Phone:(312)353-8370 Fax:(312)886-2591

Project: R06 Deer Park PFAS

10625 Fallstone RoadProject Number: [none]Reported:Houston TX, 77099Project Manager: Matthew LoeselMay-02-19 16:52

Analysis by LC MS MS - Quality Control US EPA Region 5 Chicago Regional Laboratory

Batch B19E001 - *** DEFAULT PREP ***

Matrix Spike Dup (B19E001-MSD1)	Source:	1905002-18	005002-18 Prepared: May-01-19 Analyzed: May-02-19								
	ъ. н	Flags /	MAN	Reporting	***	Spike	Source	a/PEG	%REC	DDD	RPD
Analyte	Result	Qualifiers	MDL	Limit	Units	Level	Result	%REC	Limits	RPD	Limit
Surrogate:	78.7				ng/L	106.1		74.1%	70-130		
perfluoro(1,2-13C2)hexanesulfonateC13(2)-4:											
Surrogate: M9PFNA	86.5				"	113.5		76.2%	70-130		
Surrogate: M8PFOSA	89.6				"	113.5		79.0%	70-130		
Surrogate: M8PFOS	90.6				"	108.6		83.4%	70-130		
Surrogate: M8PFOA	91.8				"	113.5		80.9%	70-130		
Surrogate: M7PFUnA	78.5	Q			"	113.5		69.2%	70-130		
Surrogate: M6PFDA	85.0				"	113.5		74.9%	70-130		
Surrogate: M5PFPeA	104				"	113.5		91.3%	70-130		
Surrogate: M5PFHxA	109				"	113.5		96.0%	70-130		2
Surrogate: M4PFHpA	98.6				"	113.5		86.9%	70-130		
Surrogate: M3PFHxS	96.5				"	107.3		89.9%	70-130		
Surrogate: M3PFBS	107				"	105.4		101%	70-130		
Surrogate: M2PFTreA	1.82	Q			"	113.5		1.60%	70-130		
Surrogate: MPFDoA	68.7	Q			"	113.5		60.5%	70-130		
Surrogate: MPFBA	114				"	113.5		101%	70-130		

Chicago Regional Laboratory

536 South Clark Street, Chicago, IL 60605 Phone:(312)353-8370 Fax:(312)886-2591

Region 6, US EPA Project: R06 Deer Park PFAS

10625 Fallstone RoadProject Number: [none]Reported:Houston TX, 77099Project Manager: Matthew LoeselMay-02-19 16:52

Notes and Definitions

U Not Detected NR Not Reported

Q QC limit Exceeded